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Abstract

Objective: In this paper we propose artificial intelligence methods to esti-

mate cardiorespiratory fitness (CRF) in free-living using wearable sensor data.

Methods: Our methods rely on a computational framework able to contex-

tualize heart rate (HR) in free-living, and use context-specific HR as predictor

of CRF without need for laboratory tests. In particular, we propose three es-

timation steps. Initially, we recognize activity primitives using accelerometer

and location data. Using topic models, we group activity primitives and derive

activities composites. We subsequently rank activity composites, and analyze

the relation between ranked activity composites and CRF across individuals.

Finally, HR data in specific activity primitives and composites is used as pre-

dictor in a hierarchical Bayesian regression model to estimate CRF level from

the participant’s habitual behavior in free-living.

Results: We show that by combining activity primitives and activity com-

posites the proposed framework can adapt to the user and context, and outper-

forms other CRF estimation models, reducing estimation error between 10.3%

and 22.6% on a study population of 46 participants.

Conclusions: Our investigation showed that HR can be contextualized in

free-living using activity primitives and activity composites and robust CRF

estimation in free-living is feasible.
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cardiorespiratory fitness

1. Introduction

In the past few years, ubiquitous sensing technologies showed unprecedented

insights into the relation between physical activity and health [1]. Wearable sen-

sors are getting more and more widespread due to improvements in miniatur-

ization, battery capacity and user experience design, reaching ubiquitousness in5

the quantified-self community and being rapidly adopted by the general popula-

tion. Due to fast paced technological developments and increased availability of

multivariate data streams acquired from wearable sensors (e.g. accelerometer,

physiological data), new computational and artificial intelligence applications

and techniques have been developed. When deployed in unsupervised free-living10

settings computational and artificial intelligence techniques can help shedding

light on the complex relation between human behavior and health, ultimately

driving behavioral change and better health outcomes [2, 3, 4, 5].

Wearable sensors have great potential for accurate physical activity moni-

toring in daily life [3, 2]. However, artificial intelligence capabilities of current15

systems and devices are limited, with almost all solutions focusing on behavioral

aspects of physical activity such as steps, activity type and energy expenditure

[6, 7]. On the other hand, cardiorespiratory fitness (CRF) is a marker of cardio-

vascular and cardiorespiratory health, and therefore is a key health parameter

that could be estimated using state of the art technologies and computational20

methods [8, 9, 10].

CRF is defined as the ability of the circulatory and respiratory systems to

supply oxygen during sustained physical activity and is considered among the

most important determinants of health and wellbeing. CRF is not only an

objective measure of habitual physical activity, but also a useful diagnostic and25

prognostic health indicator for patients in clinical settings, as well as healthy

individuals [8]. Epidemiological research has shown that in both individuals

affected by disease [11] and healthy individuals [12, 13] higher level of CRF
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resulted in better outcomes in term of slower disease progression, lower risk

of cardiovascular disease as well as lower risk of all cause mortality. Thus,30

knowledge of CRF can be key in managing a healthy lifestyle.

Current practice for CRF measurement is direct measurement of oxygen

volume (V O2 in ml/min) during maximal exercise (i.e.V O2max), the gold stan-

dard. However, V O2max tests are affected by multiple limitations. Medical

supervision is required and the test can be risky for individuals in non-optimal35

health conditions. Less risky submaximal tests have also been developed [14].

Submaximal tests to estimate CRF typically require measuring heart rate (HR)

while running at a certain speed or biking at a certain intensity. The inverse

relation between HR at a certain exercise intensity, fixed by the strict exer-

cise protocol that has to be sustained, and fitness, is the rationale behind this40

approach.

In this work, we propose to use artificial intelligence methods to estimate

CRF using wearable sensor data acquired in free-living. We rely on the inverse

relation between HR and fitness, but without the need for specific exercise

protocols in laboratory settings. We aim at using computational techniques to45

automatically determine contexts in which HR can be interpreted, without any

supervision from the user, and in free-living. Our hypothesis is that physiological

data, for example HR, in free-living settings is not only affected by activity

primitives such as walking, but by a combination of activity primitives and

more abstract activity composites such as social interactions, working, etc. We50

define context as a combination of activity primitives and activity composites.

Thus, we propose a method to determine both activity primitives and activity

composites, to contextualize HR. Finally, after determining the user’s context,

we use contextualized HR to estimate person-specific CRF in a hierarchical

Bayesian model. By using a non-nested hierarchical Bayesian model, parameters55

can vary depending on the activity performed, therefore being more flexible

than models requiring specific activities. This paper provides the following

contributions:
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1. We propose a context recognition framework to contextualize HR and es-

timate CRF based on contextualized HR in free-living. First, we use topic60

models (TMs) to derive activity composites. Secondly, we rank activ-

ity composites to determine which activity composites are best suited for

CRF estimation. Finally, we use HR data in specific contexts (i.e. activity

primitives, walking speeds and activities composites) as a predictor in a

hierarchical Bayesian model to estimate CRF.65

2. We show the effectiveness of the proposed approach to estimate CRF on

a dataset including 14 days of unsupervised free-living recordings from

46 participants and reference V O2max acquired in laboratory conditions.

CRF estimation error was reduced between 10.3% and 22.6% compared

to alternative methods.70

2. Related work

2.1. Wearable sensors and artificial intelligence to monitor physical activity

Energy expenditure is the most commonly used metric to quantify physical

activity. Accelerometers and HR monitors are the most commonly used sin-

gle sensor devices in epidemiologic studies and consumer products. Different75

methods have been developed in the past to monitor physical activity using

such accelerometer and HR monitors. Typically, accelerometer-based systems

rely on the relation between motion intensity close to the body’s center of mass

and energy expenditure. Using a single accelerometer prevents discriminating

upper and lower body movement, e.g. biking and arm exercises, leading to large80

estimation error for activities not involving whole body motion. For example,

Crouter et al. [15] had to remove biking activities from their evaluation, due to

the inability of their system to capture physical activity when there is limited

motion close to the body’s center of mass.

Recent work showed that introducing artificial intelligence methods, activity85

type can be reliably detected with wearable sensors, opening new opportunities

for physical activity monitoring [17, 18, 19, 20, 21]. Similarly, several activity
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trackers and wearable sensors have been released on the market in the recent

past, typically providing users with estimates of calories burnt and steps taken

(e.g. Fitbit). While activity type, energy expenditure, steps, etc. are im-90

portant, they reflect only individual behavior, but do not provide insights on

the individual’s actual health status. CRF can potentially provide more infor-

mation on an individual’s health status, being a marker of cardiovascular and

cardiorespiratory health, and therefore a key health parameter [8, 9, 10]. Thus,

our work aims at moving beyond quantification of human behavior, and towards95

quantification of health status as derived by CRF.

2.2. CRF estimation in laboratory settings

V O2max is regarded as the most precise method for determining CRF [22].

Despite the indubitable importance of CRF in health, measurements of V O2max

are rare since they require specialized personnel and expensive equipment. The100

high motivation demand and exertion of the participants makes the test unfea-

sible in many patients groups [23]. As an alternative, many non-excercise and
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Figure 1: Relation between body weight, HR and CRF for participants with similar body size

(weight and height) characteristics. a) Positive relation between V O2max and body weight

disappears when participants with similar body size characteristics are considered. b) Negative

relation between V O2max and HR while walking holds on a subset of participants with similar

body size, and can potentially be used to discriminate CRF levels.

submaximal models have been developed. Non-exercise modellaboratory-baseds
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of CRF use easily accessible characteristics such as age, gender and self-reported

physical activity [24, 25]. However, for individuals with similar characteristics,105

CRF levels cannot be discriminated, as shown in Fig. 1. Submaximal tests have

been developed to estimate V O2max during specific protocols while monitoring

HR at predefined workloads [14]. Contextualized HR, e.g. HR while performing

a specific activity in laboratory settings, is discriminative of CRF levels between

individuals with similar characteristics, due to the inverse relation between HR110

and CRF [26] (see Fig. 1). Commercial devices, for example some sport watches

paired to HR monitors [27, 28] (e.g. Garmin or Polar devices), provide CRF

estimation using a regression model including HR at a predefined running speed

as predictor. However, submaximal tests are still affected by limitations; the

test should be re-performed every time CRF needs to be assessed, often requires115

laboratory infrastructure and specific activities to be performed [29].

While some devices and methods were developed to provide CRF estimation

while performing intense exercise or under laboratory settings, very few systems

and algorithms developed up to now focus on providing CRF estimation in free-

living settings [26]. Using wearable sensor in free-living to estimate V O2max120

is a novel approach. The estimation could be applied to a larger population

compared to maximal or submaximal laboratory tests. Individuals not per-

forming sports could still benefit from knowing more about their health status,

via estimates of CRF, and potentially be motivated to take up a more active

lifestyle.125

2.3. CRF estimation in free-living

Preliminary work explored the relation between physical activity as ex-

pressed by a step counter, and CRF [30]. While number of steps can provide

useful insights, the relation between HR and oxygen uptake at a certain exercise

intensity cannot be exploited using motion based sensors. Plasqui et al. [26]130

showed that a combination of average HR and level of motion over a period of

seven days correlates significantly with V O2max. However, the relation between

average HR and activity counts depends on the amount of activity performed
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[26]. Tonis et al. [31] explored different parameters to estimate CRF from HR

and accelerometer data during activities of daily living simulated in laboratory135

settings. However V O2max reference and free-living data were not collected.
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Figure 2: Density plot of HR data during the activity primitive sedentary, occurring in differ-

ent activity composites, i.e. cleaning, social, work. Although the activity primitive sedentary

occurs in all activity composites, HR differs consistently across activity composites. Thus,

detecting activity composites can improve interpretation of HR in free-living, and therefore

provide more accurate CRF estimation. Activities composites were manually annotated.

When moving towards free-living settings, HR is more difficult to interpret,

since activities vary depending on the different lifestyles people adopt. How-

ever, contextualizing HR in free-living settings using pattern recognition and

artificial intelligence methods opens an opportunity to bring sub-maximal tests140

to uncontrolled free-living conditions.

2.4. Artificial intelligence for context recognition

We hypothesized that HR in free-living settings is not only affected by ac-

tivity primitives but by a combination of activity primitives and more abstract

activity composites. Thus, we consider as context a combination of activity145

primitives and activity composites. For example, HR during the activity prim-

itive sedentary changes substantially depending on the context in which such

activity is performed. HR during social interactions is higher than during work

for sedentary activities, possibly due to the higher physiological stress involved

in talking and interacting with other people, as shown in Fig. 2. Thus, CRF esti-150

mation models might benefit from inclusion of activity composites representing
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additional factors present in free-living (e.g. psychological stress, interactions

with other people, etc.).

Various pattern recognition and artificial intelligence methods have been

proposed to determine context and activities in literature. Typically, activities155

are thought of in a hierarchical manner, starting from activity primitives, to

more abstract activity composites [32].

An example of activity primitives can be a set of postures and locomotion

activities, such as: lying down, sedentary, dynamic, walking, biking and run-

ning, as determined using supervised methods in previous research [16]. On160

the contrary, higher level contextual information, such as activity composites,

require a different recognition approach. Such activities are personal and need

unsupervised methods able to discover different patterns in each individual,

depending on their behavior. A possible solution is the use of TMs [33]. In

activity recognition, TMs were applied to discover activity composites from ac-165

tivity primitives [34]. Recent work investigated the impact of multiple TMs

(in particular LDA, latent Dirichlet allocation) parameters for activity compos-

ites discovery, showing promising results [35] for recognition of abstract activity

composites.

In our previous work [36], we proposed a method to determine which activity170

composites are better suited to interpret HR for one individual. For example,

we determined in which activity composites HR was more representative of

HR normalization parameters used to personalize EE estimates. Our approach

consisted of ranking activity composites based on features in order to compare

them across participants. In this work, we extend our method to the relation175

between HR during activity composites and V O2max. We aim at finding for

each individual specific contexts where HR is representative of CRF in free-

living, using an unsupervised approach. Then, we use contextualized HR to

predict CRF without the need for laboratory tests or specific exercises.
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3. Approach180

Following a top down approach, CRF yCRF was estimated from contextual-

ized HR HRctx∗ and anthropometric characteristics by a hierarchical Bayesian

regression model, as shown in Fig. 3. Contextualized HR HRctx∗ refers to HR

during specific activity primitives, speeds and relevant activity composites. We

used features from accelerometer Xacc, HR Xhr, location Xcoo and anthropo-185

metrics Xant as input to our context recognition and CRF estimation models.

Activity primitives c were used together with stay regions sr as input for LDA

topic discovery to obtain activity composites. Activity composites were ranked

to find the most relevant ones for CRF estimation, referred to as relevant activity

composites (see Sec. 3.3 for details). The procedure to determine activity prim-190

itives, speeds, activity composites, and therefore contextualized HR HRctx∗ is

shown in Fig. 4.

In the remaining of this section, we detail the approach and provide an

example. We consider walking at 3 and 5 km/h as exemplary activity primitives

and speeds. Thus, to determine contextualized HR, we consider HR data while195

walking at 3 and 5 km/h during relevant activity composites.

3.1. CRF estimation

The CRF estimation yCRF was derived by a hierarchal Bayesian regression

model. Parameters modeling the relations between HRctx∗ and yCRF vary

depending on the context ctx. We denote the estimation model as:

yCRFp
∼ N(XCRFp

βCRF +Xctx[p]βctx[p], σ
2
CRF ), (1)

ctx = 1, . . . , R p = 1, . . . , np

XCRFp
= [1, Xantp ] ∈ Rnp×(D+1), p = 1, . . . , np

Xctx = [HRctx∗] ∈ Rnp×1 p = 1, . . . , np

where matrix XCRFp is of dimension np× (D+ 1). np is the number of partici-

pants, while D the number of anthropometric characteristics Xantp for a person
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p, which includes body weight, height, age and sex. The associated parameters200

βCRF do not vary by context ctx since they are relative to a person and remain

the same across different activities. Contexts ctx are a set R representing a

combination of activity primitives and speeds during relevant and activity com-

posites, as shown in Fig. 3. In our example, contexts are R = 2, i.e. walking

at 3 or 5 km/h during relevant activity composites, and control the parameters205

βctx for the predictor HRctx∗. By letting the parameters βctx vary, users are not

constrained to one specific activity. Instead, the model will provide a CRF es-

timate yCRF depending on the available activity primitives and speeds. Details

on the model parameters estimation procedure are reported in Sec. 5.

Figure 3: Hierarchical Bayesian model in plate notation. Parameters βctx vary by context ctx

and model the relation between contextualized HR HRctx∗ and CRF yCRF .

3.2. Context recognition210

In this section we introduce our context recognition architecture to deter-

mine contextualized HR HRctx∗, as shown in Fig. 4. Activity composites were

discovered using LDA. LDA is a generative probabilistic model which discovers

K activity composites, from S time windows of N words yn. For activity recog-

nition, words yn are typically basic building blocks for activity composites, such

as activity primitives. In our implementation we used stay regions and activity

primitives (see Sec. 5) as words yn. Accelerometer features Xacc were used to

derive activity primitives ci combining a Support Vector Machines (SVM) clas-

sifier and subsequent Hidden Markov Models (HMM) used to smooth transitions
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Figure 4: Proposed approach to determine contextualized HR HRctx∗. LDA uses histograms

of activity primitives c and stay regions sr to discover a set of activity composites, which are

ranked to determine relevant activity composites. Contextualized HR HRctx∗ is shown in the

top block, and is determined by combining activity primitives, activity composites and speed.

HRctx∗ is used as input for the CRF estimation model detailed in Fig. 3.

between activities. The hidden states corresponded to the real activity compos-

ites, ci, while the observable states are the ones recognized by the SVM. Stay

regions were derived from GPS coordinates Xcoo using time and distance thresh-

olds (see Sec. 5). According to the generative process, for each word yn, we

first draw the activity composite zn. zn is a scalar z ∈ 1 : K indicating the

activity composite for time window n. Each assigned activity composite zn is

derived from a multinomial distribution defined by the parameter θs. θs is the

distribution over activity composites for time window s:

θs ∼ Dir(α) 1 ≤ s ≤ S (2)

zn ∼ Mult(θs) 1 ≤ s ≤ S, 1 ≤ n ≤ N (3)

LDA defines θs as a Dirichlet distribution with hyperparameter α. Then,

another multinomial is used to choose a word yn, conditioned on the activity

composite zn, p(yn|zn):

yn ∼ Mult(βzn) 1 ≤ n ≤ N (4)
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Where β is defined as the probability of each word n ∈ 1 : N for topic z.

The joint distribution can be specified as:

p(y, z, θ, φ|α, β) =

S∏
s=1

∫
p(θs, α)

N∏
n=1

K∑
z=1

p(zsn|θs)p(ysn|zsn, β)dθs (5)

We were interested in estimating the distributions of the parameter θs. Mul-

tiple activity composites were derived by LDA in each time window s, each

activity composite being assigned a probability. For each time window we con-

sidered only the activity composite maximizing θs, indicated hereafter as zs, the

window’s main activity composite.215

3.3. Relevant activity composites

During the training phase, the HR for activity primitives and speeds was

computed for each main activity composite zs and participant par. Accelerome-

ter features Xacc were used to estimate walking speed as yspeed = Xspeedβspeed+

ε,Xspeed = {Xacc, Xant}. The resulting matrix HRctx is of dimension K×npar,

where K is the number of activity composites and npar is the number of partici-

pants. LDA-derived activity composites do not include semantics and cannot be

compared across participants. To overcome the problem of comparing activity

composites, we characterized them with a set of features T which we used to

rank activity composites, as in [36]. In order to provide a generalized method

that is applicable to new participants, we chose features T that are indepen-

dent of a person’s lifestyle, for example, T1 ∈ T could be the relative time spent

sedentary in each activity composite for the different participants. Regardless

of what a person’s lifestyle is, it will always be possible to order LDA-derived

activity composites by feature T1, e.g. the relative time spent sedentary in

each activity composite. Then, HRctx was ranked by feature T1, providing a

way to investigate the relation between the HR in different activity composites

and CRF, across participants. The ranking orders HRctx by values of T1 from
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maximum to minimum. Since we are interested in highlighting commonalities

across activities composites, ranked HRctx are smoothed by a moving average,

resulting in HRctx. As a result, we obtain an array of k ranked HR values per

participant. We conclude the training phase by determining which feature in T

maximizes Pearson’s correlation between HRctx and CRF. We define the vector

of correlations rT for a set of TN features in a context ctx. Thus, for each

context ctx, we have:

rT = {rrankT1
, . . . , rrankTN

}, (6)

rranki = r(HRctxpar={1,...,npar},i , CRFpar={1,...,npar}) (7)

Where rranki is the correlation between the vector of contextualized HR HRctx

and CRF, among all participants par for a feature Ti in a context ctx. The

activity composite providing the highest correlation was selected, i.e. the first

element of the HRctx vector across individuals and CRF, to determine which220

feature Ti results in activity composites most representative of CRF. Thus, the

feature Ti = maxrTctx showing the highest correlation between HRctx and CRF

is chosen to determine relevant activities composites.

As an example, we consider as contexts ctx walking at 5 km/h during ac-

tivity composites with the maximum relative time spent sedentary, i.e. relevant225

activity composites, as shown in Fig. 5. We first determine the vector of k

elements HRctx, representing the mean HR while walking at 5 km/h in each

LDA-discovered activity composite. Then, HRctx are ranked based on the fea-

ture Ti maximizing the correlation on our training set (i.e. the relative time

spent sedentary in each activity composite), to determine HRctx∗. The first230

element of the ranked and smoothed HRctx vector, is the contextualized HR

HRctx∗, used as input for CRF estimation.
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Figure 5: Exemplary diagram of the procedure to determine contextualized HR HRctx∗.

Plots show 24 hours of free-living data for one participant. For this illustration, we selected

as activity primitive and speed walking at 5 km/h during relevant activity composites, and

highlighted them in red. a) Recognized activity primitives, as detected by the combined SVM

and HMM classifier. b) Walking speed ys, determined when walking is detected, using a linear

regression model. c) Activity composites determined by LDA and defined by the distribution

of activity primitives and stay regions over 15 minutes windows. Relevant activity composites

are determined using the procedure detailed in Sec. 3.3, maximizing the correlation between

HR and CRF. d) Contextualized HR HRctx∗ is determined as the mean HR while walking at

5 km/h during relevant activity composites in this example, and highlighted in red. HRctx∗

is used to estimate CRF, as shown in Fig. 3. Between 17 and 18 hours no data are present

since the sensor was being charged.
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4. Evaluation study

4.1. Participants and data acquisition

Participants were 46 (21 male, 25 female), age 24.7±4.9 years, weight 68.6±235

10.9 kg, height 172.8±8.9 cm, BMI 22.9±2.5 kg/m2 and V O2max 3020.8±668.9

ml/min. Written informed consent was obtained, and the study was approved

by the ethics committee of Maastricht University. The sensor platform used was

an ECG Necklace, a platform configured to acquire one lead ECG data at 256

Hz, and three-axial accelerometer data at 32 Hz. The ECG Necklace was worn240

on the chest, close to the body’s center of mass. The ECG Necklace was worn

during laboratory protocols and free-living. Additionally, during free-living each

participant carried a Samsung Galaxy S3 used to record GPS coordinates at 5

minutes intervals. Reference CRF was determined as V O2max, by means of

an incremental test on a cycle ergometer [37] using a indirect calorimeter that245

analyzed O2 consumption and CO2 production. The dataset considered for this

work contains 507 days of data collected from 46 participants in free-living, thus

for each participant we acquired about 11 days of accelerometer, ECG and GPS

data. Compared to the two-week protocol, available data per participants varied

between 7 and 14 days, due to participant availability, sensor failures and power250

outages, as participants forgot to recharge, causing data losses. Nevertheless,

we consider that the recordings were sufficient to capture the behavior of each

participant. 75 hours of laboratory recordings including reference V O2, V CO2,

acceleration, ECG and V O2max were also obtained for model validation.

4.2. Experiment design and validation procedure255

We collected data in free-living and laboratory settings and evaluated four

approaches to CRF estimation. All approaches were evaluated with respect to

reference CRF measured by means of a V O2max test carried out on a cycle

ergometer. In the remaining of this paper, we will use the following terminology

to characterize the four estimation conditions that were used for comparison;260

a) anthropometrics: no HR data was used, b) no-context : HR in free-living was

15



Figure 6: ECG Necklace and Samsung S3, the wearable sensor and phone used to collect ac-

celerometer ECG and GPS data in this study. The ECG Necklace was worn during laboratory

protocols and free-living recordings close to the body’s center of mass. The Samsung S3 was

carried during free-living only.

used directly to estimate CRF, c) primitives: HR in free-living was contextual-

ized using activity primitives and speed, d) composites: HR in free-living was

contextualized using activity primitives, speed and relevant activity composites.

Two laboratory protocols were designed and implemented for each partic-265

ipant on two separate days to avoid the maximal fitness test to affect physi-

ological parameters during less intense activities and vice versa. Additionally,

each participant wore the ECG Necklace in free-living for 14 days. All results on

CRF estimation were obtained from the free-living data, whereas the laboratory

data was used to derive the models, as detailed in the next Sections.270

Data from laboratory protocols were used to develop supervised methods for

activity type recognition and walking speed estimation. Activity type recogni-

tion and walking speed estimation models were deployed in free-living and used

as building blocks to contextualize HR. Additionally reference V O2max was

collected under laboratory protocols to validate the proposed CRF estimation275

models. Data collected in free-living were used to determine contextualized HR

and use contextualize HR as predictor for CRF estimation. CRF estimation

models including contextualized HR as predictor relied on; laboratory-validated

activity type recognition and walking speed estimation models, stay regions de-

termined without supervision in free-living (see Sec. 5) and activity composites280

determined using LDA, in free-living.
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4.2.1. Laboratory protocols

Participants reported at the lab on three separate days and after refraining

from drinking, eating and smoking in the two hours before the experiment. Two

laboratory protocols were performed. The first protocol included simulated285

activities performed while wearing a portable indirect calorimeter. Activities

included: lying down, sitting, sit and write, standing, cleaning a table, sweeping

the floor, walking (treadmill flat at 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 km/h) and

running (treadmill flat at 7, 8, 9, 10 km/h). Activities were carried out for a

period of at least 4 minutes. The second protocol was a V O2max test providing290

reference data for biking and CRF. The third day was used for anthropometric

measurements including the participant’s body weight, height and body fat

assessed using doubly labelled water [38].

4.2.2. Free-living protocol

Participants worn the ECG necklace for 14 consecutive days in free-living and295

manually annotated their activity composites in a paper diary. Participants were

instructed to annotate activity composites as they occurred during the day and

to annotate only activity composites such as going to work, sleeping, commuting,

etc. Annotated activity composites were not used for model development since

activity composites were derived using LDA, and therefore without supervision300

from activity primitives, as detailed in Sec. 3 and Sec. 5. The annotations

were only used to interpret the LDA and CRF estimation results as detailed

in the discussion, Sec. 7. Activity composites can only be determined from

free-living data, since they cannot be simulated under laboratory conditions.

Participants carried a Samsung S3 phone and were instructed to charge both305

the ECG Necklace and phone and to change electrodes daily.

4.2.3. Statistics and performance measures

All models were derived using leave-one-participant-out cross validation.

The same training set, consisting of data from all participants but one, was

used to build feature selection, activity recognition, walking speed estimation310
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and CRF estimation models. The remaining data was used for validation. The

procedure was repeated for each participant and results were averaged. LDA

models were built on data from the participant to be validated, since no refer-

ence or training set are necessary. Performance of the activity recognition mod-

els was evaluated using the class-normalized accuracy, in laboratory recordings.315

Results for walking speed estimation and CRF estimation are reported in terms

of Root-mean-square error (RMSE) and Pearson’s correlation (r), where the

outcome variables were speed in km/h and CRF in ml/min respectively. Paired

t-tests were used to compare RMSE between models.

5. Implementation320

5.1. Context recognition

5.1.1. Features

Accelerometer data from the three axes were segmented in 5 s windows,

band-pass filtered between 0.1 and 10 Hz, to isolate the dynamic component

due to body motion, and low-pass filtered at 1 Hz, to isolate the static compo-325

nent, due to gravity. Feature selection for activity type recognition was based

on results from our previous work [19], using a different dataset. Selected fea-

tures were: mean of the absolute signal, inter-quartile range, median, variance,

main frequency peak, low frequency band signal power. Accelerometer features

for walking speed estimation were: mean of the absolute signal, inter-quartile330

range, variance, main frequency peak, high frequency band signal power. HR

was determined from RR intervals extracted from raw ECG data and averaged

over 15 seconds windows.

5.1.2. Activity primitives

Laboratory activities were grouped into six clusters to be used for classifica-335

tion of activity primitives. The six clusters were lying (lying down), sedentary

(sitting, sit and write, standing), dynamic (cleaning the table, sweeping the

floor), walking, biking and running. Activity primitives were derived combining

18



a SVM and HMM. For the SVMs, we used a Gaussian radial basis kernel (cost

function parameter C = 1). Parameters were set based on previous work from340

our group [21]. The HMM is defined by parameters λ = (π,A,B); where π are

the initial state probabilities, A is the transition probability matrix, defining

the probability of transitioning between one activity to the other at time inter-

val t. The HMM states corresponded to activity primitives. B is the emission

matrix, which defines the probability of getting an emission at time t, given345

the state. We implemented the emission matrix B as bij = 0.5 ⇐⇒ i = j,

bij = 0.1 ⇐⇒ i 6= j, while transitions probabilities A between actual states

were derived from training data. Training data was the SVM classification result

obtained with reference activity primitives manually annotated in laboratory

settings.350

5.1.3. Walking speed

Walking speed was estimated using a multiple regression model using as

predictors the features listed in Sec. 5.1.1, together with the participant’s height.

Laboratory recordings on a treadmill while walking at different speeds were used

to build participant-independent walking speed models.355

5.1.4. Stay regions

Stay regions were computed from GPS coordinates according to time and

distance thresholds, which were set to 60 minutes and 1 km according to pre-

vious literature [39]. The time threshold ensures that each stay region is a

location where the participants spent a significant amount of time, while the360

distance threshold ensures that noisy recordings do not result into a multitude

of stay regions being detected. GPS data was collected at 5 minutes intervals to

conserve battery power. The relatively wide distance and time thresholds were

chosen due to the low frequency of the GPS recordings.

5.1.5. Relevant activity composites365

Input primitives for LDA were occurrences histograms of stay regions and

activity primitives in each time window s. LDA hyperparameter α was set to
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0.01, while segment size and number of topics k were set to 15 minutes and 20

topics respectively, based on results obtained in previous research [35]. Param-

eters were optimized using an implementation of the variational expectation-370

maximization algorithm proposed in [33]. HR during activities composites

HRctx was ranked according to different features T : amount of time spent in

each activity composite, relative amount of time spent in each activity primitive

for an activity composite, with respect to the total time spent in the same activity

primitive across all activities composites and relative time spent in each activity375

primitive per activity composite. These features were chosen since they can be

computed across participants and activities composites regardless of the partic-

ipant lifestyle or activity composite semantics. Ranked HRctx were correlated

with CRF to determine which activities composites features were more repre-

sentative of CRF. Ranking of HRctx values was smoothed by a moving average380

of 2 elements, i.e. over the first two ranked activity composites. The relevant

activity composites discovery procedure was also evaluated independently of the

participant. Contextualized HR HRctx was ranked and correlated with CRF for

np−1 participants. The feature resulting as the most representative of CRF, i.e.

the one for which correlation was maximized, was used to determine relevant385

activity composites for the left out participant. The procedure was repeated np

times, where np was the number of participants.

5.2. CRF estimation

Hierarchical Bayesian models for CRF estimation introduced in Sec. 3 were

implemented using R and JAGS. Posterior parameters estimations were per-390

formed by Gibbs sampling with 3 chains and 10000 iterations. The first 500

iterations were discarded (burn-in period). We consider reference V O2max as

CRF. We chose walking at different speeds as activity primitives normally car-

ried out by most of the population. We evaluated our V O2max estimation

models using as predictor HR contextualized over a broad range of walking395

speeds, from 2.5 to 6 km/h. The hierarchical Bayesian model to estimate CRF

also included the participant’s weight, age, sex and height as predictors. We im-
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Figure 7: Correlation between HR and V O2max. Correlation is lowest for No-context and

were highest when activity composites (Composites) were used, compared to the condition

were only activity primitives (Primitives) were considered. HR data during activity primitives

and composites was acquired in free-living settings.

plemented the models listed in Sec. 4 for comparison, thus estimating V O2max

using anthropometric characteristics only (case anthropometrics), HR in free-

living (case no-context), HR while walking at a certain speed (case primitives),400

and HR while walking at a certain speed relevant activity composites (case com-

posites).

6. Results

6.1. Activity primitives and walking speed

Activity primitives and walking speed were validated in laboratory settings.405

Class-normalized accuracy of the SVM-HMM activity recognition classifier was

95.8%. More specifically, accuracy was 98.2% for lying, 98.9% for sedentary,

83.5% for dynamic, 99.4% for walking, 96.5% for biking and 98.4% for running.

Walking speed estimation RMSE was 0.37 km/h.
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6.2. Relevant activity composites410

Fig. 7 shows the absolute value of the correlation between HR and V O2max

for different contexts. HR in free-living was moderately correlated with V O2max

(comparison case no-context, r = −0.43). Correlation between HR and V O2max

in free-living was stronger for walking activity primitives, compared to no-

context, ranging from −0.55 to −0.63. Correlation had a tendency to increase415

as speed increased, reaching the highest value for walking at 6 km/h. Fig. 8

shows results for V O2max estimation models. RMSE between estimated and

predicted V O2max when no HR data was used (case anthropometrics) was 322.5

ml/min. The relation between contextualized HR HRctx (i.e. including relevant
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Figure 8: RMSE of CRF estimation in free-living against V O2max reference. Error bars

represent standard error. RMSE is highest for Anth, followed by No-Context, showing that

not using HR data or using HR data without context produces larger errors in V O2max esti-

mation. A combination of activity primitives and activity composites (condition Composites)

shows optimal results, i.e. the lowest RMSE across different walking speeds, compared to the

condition were only activity primitives (Primitives) were considered. HR data used as predic-

tors was acquired during activity primitives and composites performed without supervision in

free-living settings.
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activity composites) and V O2max was maximized ranking activities composites420

by feature Ti = relative time spent sedentary within an activity composite. Cor-

relation ranged between −0.57 and −0.71, reaching the highest value for walking

at 6 km/h. Thus, correlation was consistently improved when a combination of

activity primitives and relevant activity composites was used to contextualized

HR, compared to no-context and activity primitives only, as shown in Fig. 7.425
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Figure 9: Estimated and measured V O2max for the four conditions compared in this work.

R2 is increased and RMSE is reduced when adding more levels of contexts. The best results

when V O2max is estimated using HR contextualized by activity primitives and composites,

as shown in d). HR data used as predictors was acquired during activity primitives and

composites performed without supervision in free-living settings.

6.3. CRF estimation

RMSE was reduced to 286.3 ml/min (11.3% error reduction) when includ-

ing free-living HR as predictor but no contextual information (case no-context).

Estimation error was further reduced for case primitives, i.e. using the HR

while walking at a certain speed as predictors. More specifically, RMSE var-430

ied between 287.3 and 267.6 ml/min, depending on walking speed. RMSE was

reduced by 17.0% and 6.5% compared to case anthropometrics and no-context

respectively, when the best model was used (i.e. walking at 6 km/h). Contex-

tualizing HR by a combination of activity primitives and activity composites

provided better accuracy than any other model. RMSE varied between 268.9435

ml/min and 249.5 ml/min, depending on walking speed. A combination of activ-

ity primitives and activity composites always outperformed activity primitives

alone, as shown in Fig. 8.
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Activity primitives in free-living were recognized as follows: 44.5% lying,

36.4% sedentary, 9.5% dynamic, 5.4% walking, 3.8% biking and 0.4% running.440

The average walking speed in free-living over the entire dataset was 3.5 ± 1.5

km/h. Participants spent 71± 27 minutes per day in walking activities, 7± 5.4

minutes walking at 6 km/h.

Overall, combining activity primitives and activities composites provided

error reductions up to 22.6%, 12.8% and 10.3% compared to anthropometrics,445

no-context and primitives respectively. Fig. 9 shows estimated and measured

V O2max for the four models compared in this study. Explained variance (R2)

and RMSE are reported, showing increased R2 and reduced error as more con-

text is included. For the latter figure, only the best performing models is shown

for cases primitives and composites.450

7. Discussion

Many methods have been developed to estimate V O2max using data col-

lected under supervised laboratory conditions or following strict protocols. How-

ever, to the best of our knowledge, this is the first work, which proposes to

use pattern recognition and artificial intelligence methods to determine activity455

primitives and activity composites as contextual information, and then inter-

pret HR data in free-living. We showed RMSE reductions of 22.6% compared

to estimates derived using anthropometric characteristics only, and RMSE re-

ductions up to 10.3% compared to estimates derived using activity primitives,

highlighting the benefit of our context recognition method.460

We hypothesized that the presence of a multitude of factors such as psycho-

logical stress, interactions with other people, etc. in free-living required a novel

approach over the prior estimation attempts used in laboratory settings. In par-

ticular, HR in free-living is not only affected by activity primitives - as shown

in the lab - but by both activity primitives and activity composites. Thus, de-465

veloping computational methods able to incorporate knowledge of contextual

information beyond activity primitives could potentially improve interpretation
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of HR in free-living. Our results confirm the importance of activity composites

in free-living. RMSE was consistently reduced over a broad range of walking

speeds, as shown in Fig. 8. We translated the need for contextual informa-470

tion into a hierarchical model. In our previous work we introduced relevant

activity composites for energy expenditure estimation [36]. We established rel-

evant activity composites to relate discovered activity composites for which no

supervised information exists, to behaviour-related HR.

In this work, we discovered individual activity composites of each user with-475

out identifying them. Measuring the composite discovery performance was not

needed since we assessed the CRF estimation based on the LDA output. We

determined which activity composites were better suited for CRF estimation by

ranked them according to the correlation of selected features and HR. The ap-

proach simplified our study methodology as no activity composite annotations480

were required. However, discovered activity composite do not provide semantics

and comparison between participants is challenging. Typically, activity com-

posite of interest are isolated and further classified using supervised methods

[34, 35], thus requiring prior knowledge of the activity composites to discover,

effectively limiting the unsupervised nature of the method. Ranking allowed485

for comparison of activity composite specific features across participants, thus

making the approach unsupervised and generalizable to new participants.

We found a strong relation between the relative time spent sedentary in each

activity composite and CRF. A possible explanation for the relation between HR

contextualized by activity composites ranked by relative time spent sedentary490

in each activity composite and CRF is that activities composites in which peo-

ple spend most of their time sedentary are typically representative of a stable

physiological condition, which might be more representative of their CRF level.

On the contrary, short or infrequent activities might involve more stressful situ-

ations as well as more intermittent HR, causing cardiovascular responses which495

are not as reliable for HR interpretation [40]. An example of an activity com-

posite that maximizes the relative time spent sedentary is working at the office.

While most of the time while working at the office an individual is probably
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sedentary, there can still be many periods of walking, that are therefore used

to contextualize HR. In such periods, HR might be less affected by for example500

carrying loads, effects of previously performed intense exercise, walking hills,

etc.) and therefore be more representative of CRF.

We relied on the inverse relation between HR at a certain workload and

V O2max, as often reported for laboratory protocols. However, by using a non-

nested hierarchical approach, where parameters varied based on the activities,505

we did not constrain the participant in performing specific activities or walk-

ing at predefined speeds. Instead, based on the participant’s preferred walking

speed in free-living, the optimal parameters were used. The activity primitives

chosen as free-living contexts were lying down and walking, for the following

reasons. First, we aimed at activities commonly performed by healthy individ-510

uals. Secondly, the inverse relation between HR at rest or sleeping HR and

CRF was already shown in previous research [41, 42], highlighting how this

parameter can be valuable for V O2max estimation. Finally, walking activities

can be discriminated in intensity, by detecting walking speed, using simply an

accelerometer. Determining the specific intensity of an activity is an important515

factor when trying to detect specific context in free-living, since detecting only

activity type, if the activity can be carried out at different intensities, would

not be sufficient to determine the same context for each individual. However,

walking is an activity that can be accurately quantified in terms of both type

(i.e. walking) and intensity (i.e. speed). On our free-living dataset, partici-520

pants spent more than an hour per day walking (71 ± 27 minutes), and about

10% of walking activities involved walking at 6 km/h (7± 5.4 minutes). Thus,

walking confirmed to be a common activity of daily life, and a good candidate

to contextualize HR for CRF estimation. Noteworthy, RMSE for V O2max es-

timation was not consistently reduced by including in the models HR collected525

while walking at higher speeds. Thus, highlighting the additional complexity of

analyzing HR data in free-living.

Being able to accurately determine the user context in terms of activity type

and intensity allows us to bring the principle used in laboratory-based submax-
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imal tests (i.e. the inverse relation between HR measured while performing an530

exercise at a certain intensity, such as biking at a fixed power on a cycle er-

gometer, and V O2max) to free-living settings. Contextualizing HR by means

of activity primitives and speed improved correlation between free-living HR

and CRF. Our approach builds on LDA and a hierarchical Bayesian model to

discover activity composites and relating V O2max to behavior in a probabilistic535

framework. As a result, RMSE for CRF estimation against VO2max reference

was reduced up to 22.6%.

The proposed CRF estimation model could be used to provide accurate

information about an individual’s health without the need for laboratory infras-

tructure or specific tests. Estimating CRF continuously in free-living creates a540

feedback loop from measurements to lifestyle. CRF estimates may provide the

basis for many adaptive applications supporting behavior change. Moreover,

CRF is not only important for fitness applications, but to health and patient

care too, as CRF has known associations to disease risk. Our investigation

showed that robust CRF estimation in free-living is feasible, thus confirming545

that the applications described above are realistic.
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