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Abstract— We describe an approach to support athletes at
various fitness levels in their training load analysis using heart
rate (HR) and heart rate variability (HRV). A smartphone-
based application (HRV4Training) was developed that captures
heart activity over one to five minutes using photoplethysmog-
raphy (PPG) and derives HR and HRV features. HRV4Training
integrated a guide for an early morning spot measurement
protocol and a questionnaire to capture self-reported training
activity. The smartphone application was made publicly avail-
able for interested users to quantify training effect. Here we
analyze data acquired over a period of 3 weeks to 5 months,
including 797 users, breaking down results by gender and age
group. Our results suggest a strong relation between HR, HRV
and self-reported training load independent of gender and age
group. HRV changes due to training were larger than those
of HR. We conclude that smartphone-based training monitoring
is feasible and a can be used as a practical tool to support large
populations outside controlled laboratory environments.

I. INTRODUCTION AND RELATED WORK

Heart rate (HR) and heart rate variability (HRV) have
long been used to monitor athletes fitness levels as well as
recovery from previous workouts [1]. The rationale behind
monitoring recovery using HR or HRV is that heavy training
shifts the autonomic nervous system towards a sympathetic
drive [2], which is reflected in higher HR and lower HRV
within 24h to 48h after training. Monitoring recovery sta-
tus by means of an HRV measurement is becoming more
common among athletes as well as sport enthusiasts [3].
HRV features representative of parasympathetic activity and
hence of recovery, which are typically reported in literature
are the high frequency power and the square root of the
mean squared difference between beat to beat intervals, or
rMSSD [4]. Resting HR has been long used as a marker of
fatigue, with an increase in HR typically being representative
of a longer recovery time requirement [1]. Increases in
HR have been linked to a shift towards the sympathetic
drive of the autonomic nervous system, triggered by intense
exercise [5]. However, HR changes after training are often
in the order of a few beats and of limited practical appli-
cability [3]. Other measures used as proxies to autonomic
function include HRV features, showing stronger links with
exercise intensity and recovery in recent studies [3], [2], [4].

Smartphone-based HR and HRV measurements have be-
come popular during the last years [6], as smartphone-
integrated sensors could be used, e.g. for photoplethysmog-
raphy (PPG) [7]. Convenient PPG spot-measurement can
be performed by monitoring blood flow using the phone’s
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camera and flash light as light source [8], [9], [10]. The
phone-based PPG approach has been validated and confirmed
to provide reliable HRV estimates [8], [11].

HRV-based assessment of training load and recovery has
been validated multiple times in clinical studies or on limited
sample sizes of uniform samples of the population (e.g. a
group of elite athletes [12], [13], a sport team, or college stu-
dents [14]). Similarly, PPG-based tools aiming at replacing
laboratory equipment were validated in laboratory conditions
or on limited sample sizes.

However, single studies without longitudinal measure-
ments (i.e. daily measurements taken for multiple weeks)
cannot provide population-average quantifications of the
training effect on HR, HRV. To date, no study considered
the deployment of PPG-based HR and HRV monitoring to
analyze training effect in unconstrained free-living conditions
longitudinally and over a broad population.

We describe a PPG-based solution to acquire HRV data
and relevant reference points (e.g. self-reported annotations
on training days) using a mobile phone application and
analyze data acquired from 797 users over a period of 5
months. The application was released on the Apple Store
and could be downloaded by anyone with an iPhone, thus
allowing us to investigate the relation between HR, HRV and
training in unsupervised free-living settings. Additionally, we
break down our results by gender and age groups, showing
that PPG-based HR and HRV monitoring can be effectively
used in free-living settings to monitor training load. In
particular, we show 5.7− 11.0% differences in rMSSD and
1.0−1.9% differences in HR between days following low and
high training load, further validating the more discriminative
power of HRV with respect to HR only.

II. DATA ACQUISITION AND DATA ANALYSIS

In this section we describe the following:

• Signal processing: signal processing techniques used to
determine HRV features using a mobile phone.

• Measurement protocol: instructions provided to users of
the application upon download, to ensure reliability of
the measurements.

• Features and annotations: description of the parameters
collected and used in this analysis.

• Users: description of anthropometric characteristics and
other parameters of the users included in this analysis.

• Data analysis: analysis performed to determine the
effectiveness of the proposed application in highlighting
the relation between HR, HRV and training.



Fig. 1. Example of the data processing performed in the HRV4Training
smartphone application. a) Recorded PPG signal intensity in HSV color
space. b) Signal after band pass filtering between 0.1 and 10 Hz. c-d)
Details of the filtered signal e-f) Signal after cubic spline interpolations and
up-sampling to 180 Hz.

A. Signal Processing

PPG is an unobtrusive technique for detecting blood vol-
ume changes during a cardiac cycle. PPG is often measured
using reflection by illuminating the skin using a LED (e.g.
the phone’s flash) and detecting the amount of light that is
reflected by a photodetector or a camera located next to the
light source. The resulting PPG signal is composed of a DC
component, varying slowly depending on tissue properties
and blood volume, and an AC component, i.e. the pulsatile
component. After the systole, blood volume increases, re-
ducing the received light intensity. On the contrary, during
diastole blood volume decreases and hence light reflection
increases [15].

Given the low frame rate of mobile phone cameras,
different signal processing techniques need to be employed
to derive HRV from the phone video stream [8]. First, we
acquired a video stream at a frame rate of 30 Hz. Red, green
and blue channels are averaged over the entire frame, before
converting between the RGB and the HSV color space. Then,
the intensity component of the HSV color space is filtered
using a Butterworth band pass filter of order 4 and frequency
pass band between 0.1 and 10 Hz, as shown in Fig. 1.a-b.
The band pass filter is used to remove the DC component of
the signal, as well as high frequency noise, while maintaining
the AC component. Finally, cubic spline interpolation is used
to up-sample the signal between 30 and 180 Hz (see Fig. 1.e-
f). Up-sampling the data is a necessary requirement to have
sufficient resolution for HRV features computation [16].

We implemented a peak detection algorithm to determine
peak to peak intervals from up-sampled PPG data. Peak
detection was based on a slope inversion algorithm. Finally,
peak to peak intervals were corrected for artifacts by re-
moving intervals differing more than 20% from the previous
interval, similarly to clinical practice for ectopic beat and
motion artifacts detection in electrocardiography (ECG) [17].
Peak to peak intervals were used to compute HRV features
(rMSSD), similarly to RR intervals in ECG data.

B. Measurement Protocol

Users downloaded the HRV4Training application from the
Apple Store and agreed to provide collected measurements
and annotations for research purposes via a consent form
embedded in the application. The application instructed users
to perform the measurement right after waking up while still
lying down, to limit the effect of other stressors. In addition,
a breathing pattern was suggested to improve measurement
consistency and reliability [18]. Instructions were provided
to reproduce conditions similar to measurements at rest in
laboratory settings, as shown in Fig. 2. Measurement duration
was configurable between 1 and 5 minutes, since 1 minute
measurements were previously validated and considered of
sufficient duration for accurate HRV analysis of time domain
features such as rMSSD, the feature used in this study [19].

C. Features and Annotations

HR was computed as the mean HR over the measurement
window while as HRV feature we used rMSSD as it was
shown to be a clear marker of parasympathetic activity and
often used to determine physiological stress due to training
load [12], [14], [4]. rMSSD was computed as the square root
of the mean squared difference between PPG peak to peak
intervals after artifact correction. Trainings were manually
annotated inside the application using a short questionnaire
that prompted the user right after the measurement. Training
intensities were selected among four categories; rest, easy,
average and intense. Fig. 2 shows screenshots of the appli-
cation.

Fig. 2. Screenshots of the HRV4Training application used to acquire HR,
HRV, and training data by participants on their own.
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Fig. 3. Relation between HR, HRV and training on the entire dataset.
HR is consistently increased on days following higher training load, while
rMSSD is consistently decreased. Relative changes in rMSSD are bigger,
highlighting how HRV can be more discriminative of training load. Error
bars indicate the standard error.

D. Users and Measurements

We included in this analysis all users that recorded at
least 20 HRV measurements and 7 annotated trainings since
we considered 3 weeks and one training every 3 days the
minimum amount of data necessary to investigate the relation
between HRV and training longitudinally in each individual.
Additionally, we excluded all measurements which resulted
in more than 10% RR intervals to be discarded after applying
the artifact correction method described in Sec. II-A. After
applying our inclusion criteria we were left with 797 users
(674 male, 123 female) and 55426 measurements, i.e 70
measurements per user on average. Mean age was 39.8±10.6
years, mean weight was 76.9 ± 12.3 kg, mean height was
177.9± 7.9 cm and mean BMI was 24.2± 3.1 kg/m2. Most
users reported training 3 or more times per week (N=711).
Users were also grouped by age in order to analyze the
relation between physiological data and training across age
groups. Age groups were 20 to 30 years old (N=132), 30 to
40 years old (N=280), 40 to 50 years old (N=243) and 50 to
60 years old (N=95). Mean rMSSD over the entire dataset
was 77.9± 45.3 ms while mean HR was 58.8± 9.4 bpm.

E. Data Analysis

The relation between physiological data and training was
analyzed by first computing day to day differences in HR,
HRV for each user. Subsequently, we analyzed the change
in HR and HRV on days following trainings of different
intensities for each user. We clustered training intensities
in two groups; low training load comprising rest days and
training days annotated as easy, and high training load
comprising training days annotated as average or intense by
users. We additionally analyzed the relation between HR,
HRV and training by age group and gender.
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Fig. 4. Relation between HR, HRV and training for male and female users.
In both conditions HR is consistently increased on days following higher
training load, while rMSSD is consistently decreased.

III. RESULTS AND DISCUSSION

Data from 797 users was analyzed as described in Sec. II-
E. Fig. 3 shows day to day changes in HR and HRV across all
users. HR decreased by 0.3 bpm (0.5%) on average after rest
days or easy trainings (case low training load), while rMSSD
increased by 1.3 ms (1.6%). On the contrary, HR increased
by 0.5 bpm (0.9%) on average after average or intense
trainings (case high training load), while rMSSD decreased
by 3.5 ms (5.3%). Differences in HR and rMSSD on days
following low and high training loads were both significant
(p-value=6.408−14 for HR, p-value=1.997−14 for rMSSD).
These results are consistent with previous small-scale studies
showing reduced parasympathetic activity after trainings of
higher intensity [3], [2], [4]. HR changes between training
conditions were on average rather small (between 1.0%
and 1.9% across the groups analyzed) while changes in
rMSSD were between 5.7 and 11.0%, highlighting the higher
discriminative power of HRV features in the context of
monitoring training load.

We analyzed the relation between training load and phys-
iological data separately in male and female users as well
as in different age groups. Results reported in Fig. 4 and
Fig. 5 show consistent findings, with HR and rMSSD be-
ing respectively increased and decreased on days following
higher training load. In particular, in male users the relative
difference between low and high training load was 7.0%
for rMSSD and 1.5% for HR. In female users percentage
differences were 6.4% for rMSSD and 1.1% for HR (see
Fig. 4). rMSSD percentage differences across age groups
and training conditions were 6.8% for the 20− 30 years old
group, 6.8% for the 30 − 40 years old group, 5.7% for the
40 − 50 years old group and 11.0% for the 50 − 60 years
old group. HR percentage differences across age groups and
training conditions were 1.9% for the 20−30 years old group,



1.9% for the 30− 40 years old group, 1.0% for the 40− 50
years old group and 1.2% for the 50−60 years old group (see
Fig. 5). Finally, we built two linear models where HR and
rMSSD were the dependent variables, and the independent
variables were age group and gender. All coefficients for
the independent variables of the HR prediction linear model
were close to zero (−0.28 to 0.02) and were not significant
(p > 0.07). Similarly, all coefficients for the independent
variables of the rMSSD prediction linear model were close
to zero (−0.44 to 0.34) and were not significant (p > 0.31).
Thus, the relation between HR, rMSSD and training load
was independent of gender and age group.

IV. CONCLUSIONS
In this paper we investigated the relation between HR,

HRV and training data as acquired in unsupervised free-
living settings. We first introduced the signal processing tech-
niques developed to acquire HR and HRV data using only
a mobile phone. Using the developed application we were
able to acquire longitudinal data comprising measurements
from 797 users that monitored their HR and HRV for a
period of 3 weeks to 5 months. Given the greater sample size
compared to typical studies we could provide confirmative
insights on the feasibility and efficacy of such monitoring
in users of different gender and age groups. Our analysis
showed small but consistent increases in HR as well as
reductions in rMSSD following trainings of higher intensity,
regardless of gender and age group. Hence, HR and HRV-
based training guidance might be effective on a broad set of
individuals. As we grow our dataset and we collect more data
and additional self-reported annotations (e.g. sleep quality,
traveling, perceived physical condition, etc.) we will be
extending our analysis to better understand complex relations
between physiological, behavioral and lifestyle factors, in
uncontrolled free-living settings.
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Fig. 5. Relation between HR, HRV and training for different age groups. In
all conditions HR is consistently increased on days following higher training
load, while rMSSD is consistently decreased.
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