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Abstract— Monitoring fetal wellbeing is key in modern ob-
stetrics. While fetal movement is routinely used as a proxy
to fetal wellbeing, accurate, noninvasive, long-term monitoring
of fetal movement is challenging. A few accelerometer-based
systems have been developed in the past few years, to tackle
common issues in ultrasound measurement and enable remote,
self-administrated monitoring of fetal movement during preg-
nancy. However, many questions remain unanswered to date on
the optimal setup in terms of body-worn accelerometers as well
as signal processing and machine learning techniques used to
detect fetal movement. In this paper, we systematically analyze
the trade-offs between sensor number and positioning, the
presence of reference accelerometers outside of the abdominal
area and provide guidelines on dealing with class imbalance.
Using a dataset of 15 measurements collected employing 6 three-
axial accelerometers we show that including a reference ac-
celerometer on the back of the participant consistently improves
fetal movement detection performance regardless of the number
of sensors utilized. We also show that two accelerometers plus
a reference accelerometer are sufficient for optimal results.

I. INTRODUCTION

Being able to monitor fetal wellbeing during pregnancy is
one of the main challenges of obstetrics today, since birth
outcomes are strongly linked to the development of fetal
conditions during pregnancy and not only during labour [1].
Thus, different methods to monitor fetal wellbeing during
pregnancy were introduced in the past years [2]. One of such
fetal wellbeing monitoring techniques, is monitoring of fetal
movement. Pregnant women can start feeling fetal movement
as early as during the first trimester. Absence of maternal
perception of fetal movement is one symptom of fetal death,
and a reduction in fetal movement is an alarming sign of fetal
compromise [3]. Additionally, fetal movement is considered
one of the fundamental expressions of early neural activity as
it is generated spontaneously by the central nervous system
[4] and it is therefore often considered a good proxy of fetal
wellbeing.

Standard clinical practice for fetal wellbeing and move-
ment monitoring relies on different methods, which can
be grouped into active, passive and self-reported. Active
methods such as ultrasound rely on high frequency sound
waves being used to generate an image of the fetus and can
be used only for a limited amount of time. While no negative
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associations were found between diagnostic ultrasound expo-
sure during pregnancy and birth outcomes, safety concerns
still require further investigation [5], [6]. Another common
method for fetal monitoring is continuous cardiotocography
(CTG), which requires bulky infrastructure and can only be
used in the hospital environment with trained personnel, for
short periods of time [7], [8]. The inability of these methods
to monitor fetal movement outside of sporadic spot checks
in the hospital environment is one of the major causes of
concern and motivations behind the development of other
passive methods for home-monitoring, such as accelerometer
based solutions. Stillbirths are a major issue around the world
today, in both developing and developed countries [15],
further motivating the need for better and cheaper monitoring
tools.

An alternative passive method which has been investigated
in the past few years is the possibility to use on-body
accelerometers to monitor fetal movement. Accelerometer
based systems are safe, inexpensive, can potentially be
used autonomously in the home environment and showed
promising results in preliminary studies [9], [10], [11], [12],
[13]. Finally, fetal movement can also be self-reported by
the mother using a so called kick-chart, showing inconsistent
results in literature (sensitivity between 37% and 88%) for
different reasons [14]. For example fetal movement itself is
not well-defined, possibly leading some researchers to count
certain types of fetal movements instead of others. Secondly,
the time windows in which the mothers perception has to
match the ultrasound images is not consistent.

Miniaturized wearable sensors including on-board ac-
celerometers can provide a way to investigate passively
and safely fetal movement inside [10] or outside [9] the
hospital settings. Additionally, advances in signal process-
ing and machine learning techniques, recently provided
higher accuracy in determining fetal movement using on-
body accelerometers, compared to preliminary studies using
simpler threshold-based methods [11], [12]. Accelerometer-
based systems could replace kick charts in unsupervised free-
living settings, providing a more objective and consistent
quantification of fetal movement while freeing pregnant
women from this task.

While a few different accelerometer-based solutions have
been proposed in literature in the past few years to monitor
fetal movement, inconsistencies between study protocols,
accelerometer placement, number of sensors and signal pro-
cessing techniques make it hard to understand what setup is
best and what are the trade-offs between alternative methods.



Finally, differences in reference methods and evaluation
metrics make it impossible to compare different studies and
determine the efficacy of each technique.

In this paper, we evaluate performance improvements in
fetal kicks detection when using multiple accelerometers
positioned on different locations on the body, using a dataset
comprising comprising 15 measurements from 6 on-body
accelerometers, including one reference accelerometer placed
on the back. In particular, we show that two accelerometers
plus a reference accelerometer are sufficient for optimal
results and that a reference accelerometer is necessary to
discriminate maternal movement regardless of the number of
sensors used. We also discuss several points related to trade-
offs and design choices relevant in the context of developing
a fetal movement detection algorithm (window size, class
imbalance, choice of classifier, performance metrics), in
order to provide a clear framework and ease comparisons
with future works.

II. RELATED WORKS

Related works can be grouped according to different
criteria: number of sensors used, presence of a reference
accelerometer placed outside of the abdominal area and data
analysis techniques used. Most studies involved one single
accelerometer placed on the abnormal area and reported
rather low sensitivity and specificity [16]. Comparison be-
tween studies is challenging due to the different reference
and evaluation methods. However, single-accelerometer sys-
tems typically reported detection rates around 50%, deemed
insufficient by the researchers themselves [16]. The rationale
behind the addition of a reference accelerometer is that by
monitoring maternal movement artifacts using an accelerom-
eter placed outside of the abdominal area, fetal movement
should be separable from maternal movement and therefore
detected more accurately [9]. However, accelerometer place-
ment should be outside of the abdominal and thoracic area,
since accelerometer placement on the upper thoracic area was
still able to detect fetal movement and was therefore unusable
as reference [17]. The difference in movement detection
performance when including or excluding the reference ac-
celerometer is not reported by the previous studies, and often
used as post-processing signal to discard data more than to
inform the classification process [11], [9].

Data analysis techniques used up to today mainly focused
on feature extraction by means of time (e.g. the magnitude
of the acceleration vector [18]) and frequency domain sig-
nal processing techniques [16], [9], [17] and only recently
touched machine learning techniques such as using Support
Vector Machines to classify a set of features into a binary
problem (movement vs no-movement). While determining
optimal features is a necessary first step, thresholding on a
single feature provided poor results and combining multiple
features and machine learning methods has the potential for
more accurate fetal movement detection [11]. In the context
of using supervised learning methods to classify movements
and non-movements, an additional challenge arises. Fetal
movement occurs only for a short percentage of the time

during a measurement, therefore proper methods such as
downsampling of the majority class (i.e. no-movement) need
to be employed. However, evaluation of the method should be
performed on the entire data stream and not only on chunks
of data pre-selected by the researchers, as reported in [11].
Other design choices concern the windows size on which to
compute features, the choice of classifier and possibly feature
selection method, performance metrics used to evaluate the
system and finally the reference system used to validate fetal
movement detection algorithms.

Most studies relied on ultrasound as reference for fetal
movement. While ultrasound is the clinical standard, lim-
itations apply, even during research studies. For example,
with fetal growth it becomes impossible to fully display
the fetus given the limited field of vision of the ultrasound
probe, starting at approximately week 20. While this is not a
problem during hospital checkups, moving and re-positioning
the probe while trying to measure small accelerations as
reflected on the pregnant women abdomen is impractical and
can easily introduce noise. In this study we used maternal
perception and expert annotations as reference. While there
are limitations also in maternal perception, there is no
trustworthy reference for fetal movement. By analyzing the
algorithms performance and trade offs with respect to the
same reference, we could get a better understanding of the
influence of different sensor number, positioning and data
analysis methods in effectively detecting fetal movement.

III. DATA ACQUISITION

A. Accelerometers Data and Reference

Fifteen recordings were collected from 6 pregnant women
at different time points during pregnancy, all from week
30 onwards. Measurements were performed using the Porti7
device from Twente Medical Systems International (TMSi).
The Porti7 is a 32 channel analog-to-digital converter able of
sampling up to 2048 Hz with a resolution of 22 bit. To reduce
computational complexity the signals were downsampled
to 128 Hz before data analysis. Accelerometer data were
also bandpass filtered between 1 and 20 Hz with a second
order butterworth IIR filter since fetal movement is expected
to be in this frequency band [11]. All pregnant women
were given a handheld toggle which they were advised
to press when feeling fetal movement. The output of the
button was always used as reference for fetal movements.
The experimenter manually annotated fetal movements as a
pre-processing step, by locating accelerometer movements
anticipating button triggers. Finally, an experience midwife
also collected reference movement data by visually analyzing
the pregnant women abdomen during the measurement. Both
references were combined and only fetal kicks were con-
sidered movement in this study to ensure more consistency
across participants and annotations. During data collection,
pregnant women had to lie down. Five accelerometer sensors
were positioned on the abdomen with the navel serving as
central marker. The sixth sensor was placed on the back.
Exact positions of the accelerometers can be seen in Fig. 1.



Fig. 1. On-body accelerometers placement for the 5 accelerometers placed
on the abdomen. The sixth accelerometer, placed on the back, is not visible.
Also visible are electrodes used to acquire ExG data, not used in this study.

IV. DATA ANALYSIS

Several design choices need to be made when develop-
ing a method to detect fetal movement using body-worn
accelerometers, from feature computation to selecting the
proper performance metrics. In this section, we provide an
overview of the design choices and validation techniques
used before we could analyze trade-offs between sensors
number and positioning.

A. Features

We computed features over 0.5 seconds non-overlapping
windows of accelerometer bandpass filtered data. We com-
puted low-complexity time domain features to possibly en-
able easy implementation on an embedded device. Features
were: mean, standard deviation, interquartile range, correla-
tion between axis and correlation with the reference sensor
over all axis. Each feature was computed per axis and per
sensor, for a total of 83 parameters. We chose 0.5 seconds
windows given the short duration of fetal kicks. Longer time
windows showed an averaging out of the signal during our
exploratory data analysis.

B. Features Selection, Class Imbalance and Classification

We chose random forests as classifiers in order to exploit
a few advantages. During training, random forests pick a
subset of the available features at each iteration, therefore
exploiting information present in the many features included
in this study without having to reduce the feature space
using feature selection techniques. Additionally, using ran-
dom forests we can better deal with class imbalance, since
similarly to selecting subset of features at each iteration, we
can also select subsets of the majority class at each iteration,
therefore being able to train our model on balanced data
without discarding relevant information. We did not choose
a 1:1 ratio to reduce class imbalance but determined the
optimal ratio by cross-validating and optimizing the F-score.
Our optimal balance included all data from the minority class
(kicks) and one third of the majority class data. Finally,
random forests are composed of classification trees, and
therefore do not require feature normalization.

Fig. 2. Graphical example of our evaluation strategy. TP = true positives,
FN = false negatives, FP = false positives.

C. Performance Metrics and Validation Method

Models were derived and validated using leave one partic-
ipant out cross-validation and a binary classification problem
distinguishing fetal kicks and non-fetal kicks (e.g. non-
movement, noise, etc.). Given the binary classification prob-
lem and many comparisons, we chose the F-score as a
single metric representative of the main outcomes of interest,
i.e. sensitivity (the proportion of kicks that are correctly
identified as such) and positive predictive value (PPV, pro-
portion of detected kicks that are actually kicks). The F-
score was computed as 2× Se×PPV

Se+PPV .The agreement between
accelerometer-detected kicks and manual annotations was not
determined on a window by window basis, since kicks and
annotations can last different durations and include delays.
Thus, performance metrics were determined according to the
strategy depicted in Fig. 2. Finally, performance metrics were
computed on the entire data stream for all participants during
cross-validation, and not only on the subsets of data used for
training, in order to provide more realistic results.

V. RESULTS AND DISCUSSION

Results for different sensors number configurations and for
the additional reference accelerometer are shown in Fig. 3.
We first report results when no reference accelerometer on
the back was used. Mean sensitivity and PPV for the case
of one single sensor were 0.51 and 0.51, with the exception
of sensor 6 (placed on the back) that resulted in sensitivity
0.0, PVV 0.0, highlighting how this placement is optimal to
detect maternal movement instead of fetal movement. Mean
sensitivity and PPV for the case of two sensors were 0.63 and
0.54 respectively, while for three sensors sensitivity was 0.69
and PPV was 0.57. When using four sensors mean sensitivity
was 0.70 and PPV was 0.58. Finally, using all five sensors
together provided the same performance (sensitivity 0.70,
PPV 0.58). Including a reference accelerometer consistently
improved detection performance, as shown in Fig. 3. In
particular, when adding the reference accelerometer to a
single sensor, we obtained sensitivity 0.57 and PPV 0.56.
When adding the reference accelerometer to a two sensors
system, we obtained sensitivity 0.68 and PPV 0.61. Results
improved marginally when moving to three sensors, with
sensitivity 0.70 and specificity 0.63 and more consistently
when moving to four sensors, with sensitivity 0.75 and PPV
0.65. Including all sensors did not improve results compared
to the four sensors case.
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Fig. 3. F-score for different combinations of accelerometer sensors. Results
when including a reference accelerometers on the back are shown in darker
gray. Only the five best combinations are listed for clarity.

These results, combined with Fig. 3, show how two
accelerometers and a reference accelerometer on the back
can provide optimal results, when including a sensor above
the navel (e.g. sensor 3 in this study). However, for consistent
high performance across different locations, three accelerom-
eter in addition to a reference accelerometer seem to be
preferable. This setup is similar to the one used in [11].

VI. CONCLUSIONS

In this paper we analyzed trade-offs between sensors
number and positioning as well as provided insights on how
to handle imbalanced datasets using random forests and how
to cross-validate performance of fetal movement detection
algorithms to provide more realistic results. Comparing sen-
sor number, positioning and the presence of a reference

accelerometer on the same dataset allowed us to make mean-
ingful comparisons and determine performance differences in
detecting fetal kicks under different conditions. Future work
will investigate the possibility to explore different machine
learning tools to add temporal dependency to consecutive
time windows as well as include different types of fetal
movements and input signals.
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