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Summary

Personalization of energy expenditure and cardiorespiratory
fitness estimation using wearable sensors in supervised and
unsupervised free-living conditions

At present, two thirds of the world population is overweight and fails to achieve
the minimum physical activity recommendations, making lack of physical activity
one of the major health problems worldwide. Physical activity has been defined
as any bodily movement produced by skeletal muscles which results in energy
expenditure (EE). Thus EE, together with cardiorespiratory fitness (CRF), i.e. the
ability of the circulatory and respiratory systems to supply oxygen during sus-
tained physical activity, are among the most important determinants of health
and wellbeing. In the past few years, ubiquitous sensing technologies showed
unprecedented insights into the relation between physical activity and health and
have been driving behavioral change. Wearable sensors are getting more and
more widespread due to improvements in miniaturization, battery capacity and
user experience design, reaching ubiquitousness in the quantified-self commu-
nity and being rapidly adopted by the general population. As a result, a multitude
of EE estimation systems were developed in the recent past. However, currently
such systems rely on population-based estimation approaches that often do not
provide accurate estimates at the individual level.

Physiological data such as heart rate (HR) is key in providing accurate, per-
sonalized EE estimates. For example, HR at the individual level is highly corre-
lated with EE due to the strong relation between oxygen consumption, HR and EE.
However, the individual-specific relation between HR and EE differs between per-
sons, challenging the generalization of standard population-based approaches for
EE estimation. As a result, individual calibration and laboratory tests are needed
to normalize HR. The rationale behind the need for normalization is that individ-
uals with similar body size expend a similar amount of energy during a certain
activity, however their HR differs depending on other factors, for example, CRF.
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When performing the same activity, fitter individuals will have lower HR com-
pared to less fit ones. Thus, EE estimation models relying on HR to predict EE
will result in underestimations and overestimations of EE, unless HR is normal-
ized for physical fitness level.

Another limitation of current physical activity monitoring devices and algo-
rithms is the focus on EE only. EE reflects the individuals’ behavior and not the in-
dividuals’ actual health status. On the other hand, CRF can be considered a proxy
to cardiovascular and cardiorespiratory health, and therefore a marker of health
tightly coupled with physical activity. Current practice for CRF measurement is
affected by multiple limitations. Direct measurement of oxygen volume during
maximal exercise (i.e.V O2max) is the gold standard. However, V O2max tests re-
quire medical supervision and can be risky for individuals in non-optimal health
conditions. Submaximal methods to estimate V O2max are limited by the neces-
sity to perform laboratory tests or strict exercise protocols. Thus, novel methods
that can provide personalized physical activity monitoring and estimate markers
of health such as V O2max in free-living are needed.

The aim of this thesis is to introduce new methods and models to provide accu-
rate EE estimation at the individual level without requiring individual calibration
and to estimate V O2max in free-living conditions. We rely on wearable technol-
ogy to acquire combined inertial and physiological data, such as accelerometry
and HR. Novel EE estimation techniques are proposed in this thesis to account
for variability in physiological data between individuals and determine normal-
ization parameters without the need for laboratory tests or individual calibra-
tion. Furthermore, we propose methods to bring normalization techniques to
free-living conditions, avoiding laboratory protocols that are often required by
current solutions. To this aim, we propose to contextualize HR in free-living con-
ditions using a context-recognition architecture to determine different levels of
context, from low level activity primitives (e.g. walking) to high level activity
composites (e.g. commuting or working). Thus, by determining HR in specific
contexts in free-living conditions, we obtain submaximal HR at predefined inten-
sities while avoiding the need for strict exercise protocols. We use contextualized
HR to personalize EE estimation models and to estimate V O2max.

This thesis includes nine scientific publications addressing four objectives:

1. Selection of methods, sensor number and positioning: to determine which
combination of methods, sensors number and positioning is best for EE es-
timation according to state of the art solutions.

2. Physiological data normalization: to develop methods to normalize phys-
iological data and therefore personalize EE estimation regression models,
increasing the estimate accuracy at the individual level, without the need
for individual calibration.

3. V O2max estimation using wearable sensor data: to develop methods and
models to estimate V O2max using wearable sensor data, without the need
for laboratory tests or strict exercise protocols.
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4. Personalized EE estimation and V O2max estimation in free-living: to de-
velop methods to contextualize HR in free-living conditions, therefore avoid-
ing the need for strict exercise protocols to be performed under laboratory
conditions. Then, to use contextualized HR to both personalize EE estima-
tion regression models and estimate V O2max in free-living.

By addressing the four objectives above, the research included in this thesis
shows that machine learning techniques can be used to normalize and contex-
tualize physiological data in either laboratory or unsupervised free-living condi-
tions. Thus, wearable sensors can be used to contextualize physiological data and
provide personalized EE estimation and V O2max estimation without the need
for laboratory equipment or specific protocols. The results included in this thesis
advance state of the art in terms of providing EE estimates more accurate at the
individual level, as well as moving towards quantification of aspects related to
health status, such as CRF, and not only behavior (e.g. EE). Finally, we envision
different opportunities for future work relying on the proposed methods. Such
future prospects could be new applications guiding behavioral change by closing
the loop between objective monitoring of physical activity behavior (e.g. EE) and
changes in health status as quantified by CRF estimation. Additionally, some of
the proposed methodologies could be applied to other applications, beyond phys-
ical activity monitoring. For example, hierarchical modeling for implicit signal
normalization could be employed in the context of monitoring more accurately at
the individual level psychological stressors.
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1
Introduction

1.1 Physical activity and health

Lack of physical activity is one of the major health problems worldwide. At present,
two thirds of the world population is overweight and obesity affects a third of
the population in the United States [33, 79, 92]. Other diseases, such as type
II diabetes [77, 70, 71] and cardiovascular disease [24, 57] are rapidly becoming
widespread epidemics as well [133]. Physical activity has been defined as any bod-
ily movement produced by skeletal muscles which results in energy expenditure
(EE) beyond resting energy expenditure (REE) [42]. The role of physical activity
is therefore key in maintaining a healthy lifestyle for several reasons. First, for the
role of EE in regulating energy balance and body weight in the context of obesity
prevention and management. Secondly, in a broader sense in the context of many
other diseases resulting by lack of physical activity, such as cardiovascular disease
or type II diabetes.

Historically, the first epidemiological studies on physical activity date back to
the 50’s. The seminal work of Morris et al. [90] showed lower mortality rates in
bus conductors and postmen compared to bus drivers and telephone operators,
initiating physical activity and health research. Since then, a multitude of studies
showed that physical activity improves quality of life (e.g. lowering stress) and
functional capacity (e.g. fitness) in both healthy and non-healthy individuals [28,
46]. Positive outcome of exercise was shown in children, adults as well as elderly,
even regardless of total amount of physical activity or cardiorespiratory fitness
(CRF) [86, 64]. However, while the health benefits associated with the effect of a
physically active lifestyle are today recognized worldwide in our society [68, 97],
more than 60% of the world population currently fails to achieve the minimum
physical activity recommendations of 30 minutes of moderate-intensity physical
activity daily [65].

The current physical activity level of the western world is considerably differ-
ent from our Paleolithic ancestors, who spent their day hunting and gathering
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food [49]. Our ancestors used to expend much more energy compared to the en-
ergy we expend nowadays, and showed levels of CRF about 50% greater than
ours [50]. Initially the agricultural revolution, subsequently the industrial revolu-
tion, and finally the shift towards computer-based work of the past two decades,
completely disrupted human lifestyles. However, our genome has not changed
much over the past thousand years and more [49]. As a result, the world popu-
lation is now facing a multitude of epidemics due to lack of or reduced physical
activity.

1.1.1 Energy expenditure

Being able to quantify physical activity is important for epidemiological research
so that relations between physical activity, health status, environmental factors,
and so on, can be determined. Similarly, quantification of physical activity can
be key in deploying just in time interventions and promote behavioral changes
by providing individuals with an objective assessment of their physical activity
behavior. The definition of physical activity, i.e. any bodily movement produced
by skeletal muscles which results in EE beyond rest energy expenditure (REE),
introduces the concepts of EE and REE as key parameters to identify in order to
quantify physical activity. Total energy expenditure (TEE or simply EE) is mainly a
sum of internal heat produced and external work [58]. The internal heat produced
is, in turn, mainly a sum of basal metabolic rate (BMR), simply put the EE an indi-
vidual consumes while at rest, to sustain basic body functions such as breathing
and the diet induced thermogenesis (DIT), which is allocated for processes such
as digestion. External work may be estimated by measuring physical activity en-
ergy expenditure (PAEE). Therefore EE is typically defined as composed of three
factors, BMR (or REE), DIT, about 10% of TEE, and finally PAEE, the EE due to
physical exercise (see Fig. 1.1). PAEE is the most variable component of EE in
humans, and the most relevant to quantify, since it is the component we can act
upon with interventions targeting increased EE. EE is therefore the most com-
monly used single metric to quantify physical activity. Nevertheless, the effects of
physical activity go beyond EE. Type, duration, frequency and intensity of physi-
cal activity have all impact on health outcome [82].

EE measurement gold standards

EE can be measured in three different ways; direct calorimetry, indirect calorime-
try and doubly labeled water (DLW). Direct calorimetry is the gold standard, it
measures the actual heat lost by the body during activity or rest. Until now, the
only way to measure body heat has been to place an individual in a special, sealed
room, i.e. the room direct calorimeter. Room calorimeters have been used since
the early 1800’s to measure metabolism but are the least practical way of measur-
ing EE, since expensive and cumbersome equipment is required [74]. Alterna-
tively, indirect calorimeters have been developed. Indirect calorimetry analyzes
inhale and exhale gases concentration to measure EE [85]. Measuring the con-
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Figure 1.1: Breakdown of EE components as a sum of internal heat produced,
comprising BMR and DIT, and external work, i.e. PAEE.

sumption of oxygen (O2) rate and the production of carbon dioxide (CO2) rate
can be converted to EE following Weir’s equation [128]. This method is a bit more
practical, since it can be used both in room calorimeters similar to the direct ones,
as well as using portable devices able to analyze O2 and CO2 gases and deter-
mine EE. Portable indirect calorimeters typically consist of a mouth piece and a
central unit where the gas analyzers reside (see Fig. 1.2), and have a battery life
of 2− 3 hours. Finally, one of the most recent methods developed to measure EE
is DLW. DLW is water in which both the hydrogen and oxygen have been partly
or completely replaced for tracing purposes with an uncommon isotope of these
elements. Since one of the two isotopes (deuterium) is eliminated only via water
loss (urine and sweat mainly), and the ratio between the two isotopes is known,
the amount of oxygen-18, the second isotope, can be determined easily once we
know how much deuterium was expelled. Oxygen-18 exits the body via both wa-
ter loss andCO2 and therefore can be used to determine how muchCO2 was used
by metabolism. Finally, assuming a known relation betweenCO2 loss and oxygen
(respiratory ratio), EE can be estimated. DLW is an accurate method (3 − 10%
error) to estimate the mean total carbon dioxide production (and therefore EE)
however it provides only information on total EE, not minute by minute. There-
fore DLW is a valid gold standard for measurements of TEE over a period of 7 to
14 days, but does not allow researchers to determine the EE of specific activities.
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Given the confined settings of room calorimeters, practical limitations of portable
indirect calorimeters (mouth piece, short battery life) and the inability to provide
minute by minute EE estimates for DLW, significant limitations beyond cost affect
even such reference systems.

Figure 1.2: Example of indirect calorimeter, Cosmed K4b2.

1.1.2 Cardiorespiratory fitness

When analyzing the importance of physical activity in health, another important
aspect to consider is how performed physical activity reflects into changes in phys-
ical fitness, and health status. Is health status improving because of additional
physical activity and EE? Changes in physical fitness and heath status are typi-
cally measured in terms of CRF. CRF is defined as the ability of the circulatory
and respiratory systems to supply oxygen during sustained physical activity, and
is among the most important determinants of health and wellbeing [113]. With
regular exercise the circulatory and respiratory systems become more efficient by
enlarging the heart muscle, enabling more blood to be pumped, and increasing
the number of small arteries in trained skeletal muscles. As a result, more blood is
supplied to working muscles, increasing the amount of oxygen carried to the mus-
cles. CRF is not only an objective measure of habitual physical activity, but also a
useful diagnostic and prognostic health indicator for patients in clinical settings,
as well as healthy individuals [81]. Epidemiological research has shown that in
both individuals affected by disease [119] and healthy individuals [26, 127] higher
level of CRF resulted in better outcomes in term of slower disease progression,
lower risk of cardiovascular disease as well as lower risk of all cause mortality
[81] (see Fig. 1.3).
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Figure 1.3: Relative risk of all cause mortality stratified by fitness and BMI. In-
dividuals with higher BMI and higher level of fitness show reduced relative risk
for all cause mortality with respect to individuals with lower BMI and lower level
of fitness, highlighting the importance of fitness level for health. BMI categories
(normal weight, overweight and obese) were assigned using criteria from guide-
lines for the evaluation and treatment of obesity: normal weight (BMI, 18.5− 24.9
kg/m2), overweight (BMI, 25.0− 29.9 kg/m2), or obese (BMI> 30.0 kg/m2). Par-
ticipants were labeled as unfit using MET thresholds based on age: 10.5 METs for
20-39 years, 9.9 METs for 40-49 years, 8.8 METs for 50-59 years and 7.5 METs for
> 60 years or otherwise labeled as fit. Adapted from [127].

CRF measurement gold standards

Current practice for CRF measurement is direct measurement of oxygen volume
(V O2 in ml/min) during maximal exercise (i.e. V O2max), the gold standard.
Typically, V O2max tests consist in measuring V O2 using an indirect calorime-
ter during an incremental exercise test, either on a bike or treadmill [78]. How-
ever, V O2max tests are affected by multiple limitations. Medical supervision is
required and the test can be risky for individuals in non-optimal healthy condi-
tions.

The ability to properly measure and quantify both physical activity in terms
of EE and physical fitness in terms of CRF could be key in developing new ap-
plications around behavioral change and personalized coaching. By providing
tailored feedback between physical activity behavior (or EE) and health markers
(i.e. estimated CRF level), individuals could be helped in maintaining a healthy
lifestyle. To this aim, technological solutions able to unobtrusively measure both
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physical activity and fitness in free-living conditions are necessary. Ubiquitous
technology could avoid the impracticalities of gold standards currently employed
for both EE and CRF measurements.

1.2 Current methods to estimate EE and CRF using wear-
able sensors

In the past few years, ubiquitous sensing technologies that could objectively mon-
itor human behavior, started providing unprecedented insights into the relation
between physical activity and health as well as driving behavioral change [52,
29, 34, 17]. Wearable sensors are getting more and more widespread due to im-
provements in miniaturization, battery power and user experience design, reach-
ing ubiquitousness in the quantified-self community and being rapidly adopted
by the general population. Before moving to the specifics of different methods
proposed in literature to estimate EE and CRF, we provide a brief overview of
the current technological solutions as well as of the wearable sensors used in this
thesis.

1.2.1 Wearable sensors for EE and CRF estimation

Given the shortcomings of reference systems for EE measurement (cost, invasive-
ness, non-usability in free-living conditions or unreliability), the scientific com-
munity started developing early prototype of wearable sensors (electronic moni-
tors) in the early 2000s. Over the last 10 years many electronic monitors have been
introduced either on the market as commercial devices or in literature, with the
aim of taking the place of the previous methods in order to accurately estimate
EE in free-living conditions in a non-invasive manner.

Motion sensors were among the first to be employed. Using single axis ac-
celerometers at the beginning, three axial accelerometers afterwards [52, 29, 118,
19, 31, 38], researchers tried to quantify physical activity and EE in different modal-
ities. First, by exploiting the relation between whole body motion as measured by
accelerometers, and EE [38, 52]. Then, by using accelerometers to distinguish ac-
tivity types and then develop activity-specific EE models (see next sections for
details) [29, 118, 19, 31]. Usually, accelerometers were mounted at the hip, since
motion close to the body’s center of mass is more representative of EE. Other body
positions that were similarly linked to overall body motion, instead of e.g. limb
motion [118], showed to be effective in distinguish activity types and estimate EE.
Among the best-performing locations were; hip or back mounted [52, 118], chest
mounted [34, 35] and ear-worn accelerometers [19, 31]. Solutions composed of
multiple accelerometers were also proposed [118, 3].

Subsequently, physiological signals acquisition has been included more con-
sistently in electronic monitors [118, 34, 96], in order to capture more accurately
information about resistance work or work load effort. Signals explored in litera-
ture are GSR, skin temperature, heat flux and heart rate [130, 35, 43]. Physiological
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data showed consistently high correlation at the individual level during moderate
to vigorous exercise, however was also very susceptible to artifacts due to factors
such as psychological stress, emotions and differences among individuals [118].

ECG Necklace

In all chapters included in this thesis, we rely on imec’s ECG Necklace as wearable
sensor used to acquire data for our machine learning models. Thus, in this section
we provide a more detailed description of the ECG Necklace hardware [98].

The low-power ECG necklace (see Fig. 1.4) monitors 1-lead ECG (bipolar) and
3D acceleration. The core of the hardware architecture component of the system
is an ultra-low-power application specific integrated circuit for bio-potential read-
out, used to acquire ECG [134, 98]. The necklace also integrates a low-power
microprocessor from Texas Instruments (MSP430) and a low-power radio from
Nordic Semiconductor (nRF24L01). A 3D accelerometer from Analog Devices
(ADXL330) is used to measure acceleration in three axes. An on-board SD card
provides 2GB of data storage, which can last up to 2 weeks depending on the sen-
sor’s configuration. The power management unit consists of dedicated circuitry
and a rechargeable Li-ion battery, giving the ECG Necklace a lifetime of 2 days to
a week between charges, depending on the configuration.

The ECG Necklace provides also on board processing for beat detection. RR
intervals can be extracted from the ECG signal in real-time using a beat detection
algorithm based on Continuous wavelet transform. The algorithm has been opti-
mized for robustness to motion artifact and achieves best-in-class performances,
with 99.8% sensitivity and 99.77% positive predictivity on both the MIT-BIH database
and a proprietary database of ambulatory ECG recordings [102]. Data gathered
by the ECG necklace can be transmitted wirelessly to a PC via a USB receiver
equipped with a compatible radio. Alternatively, the data can also be stored lo-
cally and later downloaded. The ECG is captured using standard snap-on elec-
trodes connected to the necklace lead wires, typically placed in the lead II config-
uration. Reliability in ambulatory conditions is achieved by minimizing the effect
of motion artifact using a light-weight design, and a beat detection algorithm op-
timized for noise robustness.

All electronics and battery are packaged in a pendent that can be worn around
the neck, or attached to the waist or limbs using an elastic band. The size of the
packaged necklace is 60mm× 40mm× 10mm, and total weight is about 20 grams.
Due to the size and attachment modality of the ECG Necklace, we explored dif-
ferent sensor locations on the body, however we were limited to positions where
the ECG Necklace could be practically attached, and had to exclude others (e.g.
the ear).

1.2.2 Methods for EE estimation

A multitude of EE estimation systems were developed in the recent past [130,
52, 34, 29, 118]. Accelerometers and heart rate (HR) monitors are the most com-
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Figure 1.4: ECG Necklace system architecture and hardware prototype. The ECG
Necklace could provide accelerometer and ECG data in a single sensor, plus mem-
ory storage, and was therefore used in both laboratory and free-living studies in-
cluded in this thesis. Figure adapted from [98].

monly used single sensor devices in epidemiological studies. Accelerometers typ-
ically use activity counts, a unit-less measure representative of whole body motion
intensity, as the independent variable in the linear regression model developed
to predict EE [52]. The rationale being the relation between movement and EE,
for weight bearing activities (see Fig. 1.5). Shortcomings of simple linear regres-
sion models are that a single model does not fit all the activities, and non-weight
bearing activities cannot be correctly estimated in terms of EE. Therefore, esti-
mates based on single accelerometer based regression models show larger error
[123, 118]. Alternatively, HR monitors have been widely employed for EE estima-
tion. HR monitors suffer from different problems, the most common being the
low accuracy during sedentary behavior [43], given that HR is affected by many
other factors (e.g. stress and emotions), and the need for individual calibration
due to differences in fitness between individuals [34, 35].

1.2.3 Activity-specific estimation methods

The latest algorithms extended estimation methods based on single models by
performing activity recognition over a predefined set of activities - or clusters of
activities -, and then applying different methods to predict EE [9, 3, 118, 29, 123],
based on the activity detected (activity-specific EE approaches). Other machine
learning based methods were developed, trying to directly estimate EE from ac-
celerometer features, using for example neural networks [103, 60]. However the
latter approaches suffer from the same limitations of the counts-based estimation
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Figure 1.5: Relation between accelerometer and EE data for a series of activi-
ties performed in laboratory conditions. Walking, running and biking activities
are performed at increasing intensities over time. Accelerometer data shows a
strong relation with EE for weight bearing activities such as walking at different
speeds. However, the relation between accelerometer and EE gets very weak for
non-weight bearing activities, such as biking.

methods, being unable to capture the relation between accelerometer features and
EE during different activities [30]. The most common activity-specific approaches
are the following:

Activity-specific using METs lookup

One approach is to assign static MET values from the compendium on physical
activities [2] to each one of the clusters of activities [29, 3], and use anthropometric
features or other static features (e.g. HR at rest) to personalize the activity-specific
models for different individuals or groups of individuals.

Activity-specific using wearable sensors features

Another approach is to apply a regression equation for each activity classified [118,
123], extending counts-based approaches to multiple clusters of activities. The
regression models typically use accelerometer features, HR and anthropometric
characteristics as independent variables.
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Figure 1.6: Relation between HR and EE data for a series of activities performed
in laboratory conditions. Walking, running and biking activities are performed
at increasing intensities. HR is highly correlated with EE, especially for moderate
and vigorous activities such as walking, running and biking. We can see a weaker
link between HR and EE during lying, sedentary behavior and household.

1.2.4 Methods for personalization of physiological data

Using HR in activity-specific regression equations showed consistent improve-
ments in EE estimation compared to using acceleration only [3, 118, 34]. Addi-
tionally, when using activity-specific EE estimation models HR can be excluded
from sedentary activities, therefore mitigating some of the issues due to the low
correlation between HR and EE during sedentary behavior. However, the main
limitation of HR based EE estimation models, i.e. the need for individual cali-
bration, does not get resolved when using activity-specific models. HR during an
activity is specific to a person since it depends on the individual’s CRF level [104].
For two individuals with similar body size, EE during similar activities is compa-
rable, as shown in Fig. 1.7, first two plots on the left end side. However, differences
in HR between a sedentary and trained individual can easily reach values up to
30 bpm (or 20%) when doing the same activities, as shown in Fig. 1.7, third on
fourth plot on the right end side of the figure. As a result, since HR depends on
CRF, differences in HR between individuals with different CRF level can cause
underestimations and overestimations of EE when developing HR based EE esti-
mation models.
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Figure 1.7: EE and HR for two individuals with similar body weight and height
but different fitness level during a series of moderate to vigorous activities per-
formed at increasing intensities. EE during similar activities is comparable, how-
ever, HR differs consistently during moderate to vigorous physical activities.
Therefore, the need for HR normalization when predicting EE based on HR data.

To derive a reliable EE estimate, it is therefore necessary to normalize HR ac-
cording to an individual’s fitness. In turn, the normalized HR could serve as inde-
pendent variable in EE regression models. Individual calibration currently limits
practical applicability of HR monitors for EE estimation, since the individual rela-
tion between HR and EE needs to be determined for the algorithm to be accurate.

1.2.5 Methods for CRF estimation

CRF is typically estimated in terms of V O2max. Given the limitations of V O2max
tests, less risky submaximal tests have also been developed [18]. Some are non-
exercise CRF models, others are specific lab protocols performed while monitoring
HR at predefined running speeds (e.g. treadmill tests) or output powers (e.g. bike
tests) [18, 48, 54], without requiring maximal effort. Several non-exercise models of
CRF have been developed using easily accessible measures such as age, sex, self
reported physical activity level, body composition [69, 73]. Results typically pro-
vide decent accuracy at the group level [93]. However significant limitations apply
at the individual level, since each individual is assumed to be equal to group aver-
aged characteristics. Limited accuracy at the individual level is a common prob-
lem when physiological variables are not measured. As a result, for individuals
with similar anthropometric characteristics, CRF levels cannot be discriminated,
as shown in Fig. 1.8.

Submaximal tests have been developed to estimate V O2max during specific
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Figure 1.8: Relation between body weight, HR and CRF for participants with sim-
ilar body size (weight and height) characteristics. a) Positive relation between
V O2max and body weight disappears when participants with similar body size
characteristics are considered. b) Negative relation between V O2max and HR
while walking holds on a subset of participants with similar body size, and can
potentially be used to discriminate CRF levels. Figure adapted from [4].

protocols while monitoring HR at predefined workloads, typically while running
at a certain speed or biking at a certain intensity. The inverse relation between HR
at a certain exercise intensity, defined by the strict exercise protocol that has to be
sustained, and CRF, is the rationale behind this approach. The need for laboratory
equipment and the necessity to re-perform the test to detect changes in CRF limit
practical applicability of submaximal tests, since submaximal exercise tests should
be re-performed every time CRF needs to be assessed.

Both maximal and submaximal tests to estimate CRF are affected by important
limitations. To maximise applicability across a wide population, V O2max should
be estimated during activities of daily living, without the need for a predefined
exercise protocol.
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1.3 Goals of this thesis

The aim of this thesis is to introduce new methods and models to provide accurate
EE estimation at the individual level without requiring individual calibration and
to estimate V O2max, in free-living conditions. More specifically, the following
goals were investigated:

1.3.1 Selection of methods, sensor number and positioning

Recent work [20, 95, 19] showed that activity type can be reliably detected with
wearable sensors, opening new opportunities for EE modeling beyond simple lin-
ear regression models. Over the last years, a few activity-specific algorithms have
been reported [118, 29, 3]. What is not clear at this stage, is the methodology to
follow when developing such an algorithm. There is currently little agreement in
literature, on which activities to detect. Some [3, 118] used multi-accelerometer
systems and extensive protocols to detect a large amount of activities (26 and 52
respectively). Others [29], developed single accelerometer systems able to rec-
ognize a smaller set of activities with higher accuracy. Once the activity set has
been selected, even less agreement is found on how to predict EE given an activity.
Some works assign static Metabolic equivalents (METs), the ratio of metabolic rate
during a specific activity to a reference metabolic rate), combined with the sub-
jects’ anthropometric parameters. Others applied a linear regression equation for
each model. Moreover, little agreement is found in literature regarding number of
accelerometers, location on the body, and the role of accelerometer features (e.g.
used for activity recognition only (activity-specific models using METs lookup),
or for both activity recognition and activity-specific EE models (activity-specific
using accelerometer features)). Determining the optimal method, number of sen-
sors and on-body positioning of accelerometers to accurately estimate EE requires
addressing the following issues related to the influence of activity type misclassifi-
cation on EE estimation error, activity-specific models performance during differ-
ent activities, activity recognition accuracy and EE estimation error performance
depending on sensors number and positioning.

1.3.2 Physiological data normalization

Normally, activity-specific equations use accelerometer features and anthropo-
metric characteristics to predict EE. Some activity-specific algorithms use equa-
tions where HR or other physiological parameters (e.g. galvanic skin response,
GSR, skin temperature, etc.) are included as well [34, 35, 3, 118, 130], showing con-
sistent improvement compared to accelerometers alone. However, inter-individual
differences in physiology, as well as the consequent need for individual calibra-
tion, limit accuracy and practical applicability of such systems. For example, dur-
ing moderate to vigorous activities, differences in HR between individuals per-
forming the same activity are mainly due to CRF. Combined with activity-specific
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algorithms, information on CRF could provide more accurate EE estimation. Nev-
ertheless, algorithms in the past tackled CRF-related variance only by means of in-
dividual calibration [35], and no algorithm includes information on CRF in the EE
estimation equations. While CRF is the main factor driving changes in HR during
physical exercise [121], differences in respiration, skin temperature or GSR might
be caused by different underlying processes or characteristics of the person [109].
Breaking down the EE estimation process into activity-specific sub-problems is
not sufficient to take into account the different relation between physiological sig-
nals and EE in different individuals. Therefore, new methods are needed to au-
tomatically normalize physiological signals without requiring individual calibra-
tion and fully exploit the relation between physiological signals and EE, reducing
EE estimation error.

1.3.3 V O2max estimation using wearable sensor data

While EE is the most commonly used single metric to quantify physical activity,
with many algorithms proposed in the recent past [118, 29, 9, 67], CRF is not only
an objective measure of habitual physical activity, but also a useful diagnostic and
prognostic health indicator for patients in clinical settings, as well as healthy in-
dividuals [81]. EE and CRF are tightly coupled when EE estimation is performed
based on HR data acquired using wearable sensors. The inverse relation between
HR and CRF is one of the main causes behind the need for individual calibra-
tion of HR monitors, since differences in CRF cause differences in HR but not in
metabolic responses (EE) [104]. Thus, CRF estimation could both provide a rele-
vant health marker and be used to personalize EE estimation models, improving
estimation accuracy. Instead of performing V O2max tests or submaximal tests
involving specific exercise intensity at which HR is measured and then use the
collected HR during predefined exercise to predict CRF, non-invasive and unsu-
pervised methods could be developed. For example, using wearable sensor data
and machine learning techniques specific contexts could be automatically deter-
mined during activities of daily living. Thus, new methods using context-specific
HR during activities of daily living as predictor for CRF could be developed.

1.3.4 Personalized EE estimation and V O2max estimation in free-living

In free-living conditions, contextualizing and interpreting physiological data is
challenging, due to the effect of both low-level activity primitives (e.g. lying down,
walking, etc.) and high-level activity composites (e.g. commuting, working, so-
cializing, etc.) on physiological data. Almost no previous work addressed the
need for normalization of physiological data in EE estimation as well as V O2max
estimation in free-living conditions [100]. The person-specific nature of high level
activity composites brings additional challenges, such as the inability of reliably
using supervised methods for activity classification. Thus, the need for the de-
velopment of new methods able to bring algorithms developed under controlled
laboratory conditions to free-living settings and practical use. To this aim, ways
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to incorporate high level activity-composite information together with low-level
activity and reliably interpret physiological data such as HR in free-living condi-
tions, should be developed.
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1.4 Thesis outline

This section provides an overview of how the thesis contributions are organized
in the different chapters.

1.4.1 Selection of methods, sensor number and positioning

State of the art methods for EE estimation are reviewed, implemented and com-
pared in Chapter 2. We analyze the accuracy of simple linear regression models
as well as different types of activity-specific models. Additionally, we also analyze
the impact of different sensor modalities, such as accelerometer and HR data in re-
ducing EE estimation error. As a result, we developed a methodology combining
different activity-specific approaches to reduce the estimation error. Our method
uses as predictors static EE values for sedentary activities and a combination of
accelerometer and HR features for dynamic activities. Additionally, in Chapter 3,
we evaluated performance of the proposed methodology and other comparison
methods on a dataset comprising five on-body sensor locations and nearly fifty
activities of varying intensities, analyzing trade-offs between estimation methods,
sensor number and positioning.

1.4.2 Physiological data normalization

Chapters 4, 5 and 6 introduce methods to normalize physiological data without
the need for individual calibration. In Chapter 4 we introduce a method to per-
sonalize EE estimations relying on HR data. We first contextualize HR during low
intensity activities, i.e. determine HR while walking at a specific speed. We con-
textualized HR by combining an activity recognition classifier and a regression
model for walking speed estimation. Then, contextualized HR is used to pre-
dict a normalization parameter, thus avoiding the need for individual calibration.
The proposed method using contextualized HR data as predictor for normaliza-
tion parameters is then extended to determine the importance of HRV features
and different activity intensities in Chapter 5. Finally, the proposed normaliza-
tion methodology is extended to other physiological signals, such as galvanic skin
response and respiration rate, as a generic methodology proposed in Chapter 6.

1.4.3 V O2max estimation using wearable sensor data

In Chapter 7, we develop methods and models to estimate health markers, such
as V O2max, without the need for specific protocols. A method is developed to es-
timate V O2max from contextualized HR data collected during activities of daily
living, simulated in laboratory settings. A hierarchical Bayesian regression ap-
proach is used with model coefficients that vary depending on the performed
activity. In this way participants are not constrained to specific activities. Given
the tight relation between HR, V O2max and EE, an EE estimation model is also
developed to account for between-individual variability in HR without the need
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for explicit HR normalization. We propose another hierarchical Bayesian model
which uses a hierarchical structure with nested and non-nested groupings to es-
timate EE using coefficients varying by both activity type (as in activity-specific
methods) and participant-level characteristics, such as the predicted V O2max.

1.4.4 Personalized EE estimation and V O2max estimation in free-living

Finally, we introduce methods to personalize EE estimation regression models
and estimate V O2max in unsupervised free-living settings, outside of the labora-
tory environment. We cover this objective in Chapters 8, 9 and 10. In Chapter 8, a
method is developed to combine low-level activity primitives and high-level activ-
ity composites using topic models. Optimal contexts (i.e. combinations of activity
primitives and composites) for analyzing HR were determined without supervi-
sion. We show that the proposed method can be used to estimate HR normal-
ization parameters in free-living conditions, and therefore personalize laboratory
derived EE models. In Chapter 9, we also apply the proposed method to deter-
mine contextualized HR in free-living conditions to the application of V O2max
estimation, showing reduced estimation error compared to existing methods. Fi-
nally, in Chapter 10, we further analyze context-specific HR in both laboratory
and free-living settings, showing how V O2max estimation can be obtained with
the same accuracy in both conditions, and therefore laboratory protocols are not
required.
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Abstract

Accurate estimation of Energy Expenditure (EE) in ambulatory settings is a key element
in determining the causal relation between aspects of human behavior related to physical
activity and health. We present a new methodology for activity-specific EE algorithms.
The proposed methodology models activity clusters using specific parameters that capture
differences in EE within a cluster, and combines these models with Metabolic Equivalents
(METs) derived from the compendium of physical activities. We designed a protocol con-
sisting of a wide set of sedentary, household, lifestyle and gym activities, and developed
a new activity-specific EE algorithm applying the proposed methodology. The algorithm
uses accelerometer (ACC) and heart rate (HR) data acquired by a single monitoring device,
together with anthropometric variables, to predict EE. Our model recognizes six clusters
of activities independent of the subject in 52.6 hours of recordings from 19 participants.
Increases in EE estimation accuracy ranged from 18 to 31% compared to state of the art
single and multi-sensor activity-specific methods.
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2.1 Introduction

Lack of physical activity is one of the major health problems in most of the western
world. Even though our genome has not changed much over the last ten thousand
years and more [49], activity patterns of our hunter-gatherers ancestors have been
first modified by the agricultural and industrial revolution, and then completely
disrupted by the shift towards computer-based work which took place over the
past twenty years. As a result, two thirds of the world population is overweight
and obesity affects a third of the population in the US at present. Other diseases,
such as diabetes, are rapidly becoming widespread epidemics as well [133]. Ac-
curate quantification and assessment of habitual physical activity in ambulatory
settings is essential in order to find subtle but important links between not only
sedentary time, but all the aspects of habitual physical activity, and health [84].
New technologies, seamlessly integrated in everyone’s life, able to monitor objec-
tively and non-invasively our behavior, can provide unprecedented insights on
these links.

Currently, epidemiologists use accelerometers [52] and HR monitors [43] to
objectively gather information about physical activity. Traditionally, they make
use of regression equations developed using data acquired over a certain protocol
[21, 43, 52] to predict EE. For accelerometers, the rationale behind this approach
is that body motion measured close to the body center of mass, is linearly related
to EE. On the other hand, HR monitors exploit the linear relation between HR
and oxygen uptake. Limitations of these approaches are the inability of single ac-
celerometers worn close to the body center of mass to detect low and upper body
motion [43, 118], the low accuracy of HR monitors during sedentary behavior and
the need for individual calibration [34].

Recent work [20] showed that activity type can be reliably detected with wear-
able sensors, opening new opportunities for EE monitors. Over the last years, a
few activity-specific algorithms have been reported [3, 29, 107, 118]. They first rec-
ognize the activity performed, and then apply a model developed for the specific
activity, showing consistent improvements compared to previous methods. What
is not clear at this stage, is the methodology to follow when developing such an
algorithm. There is currently little agreement in literature, on which activities to
detect. Some [3, 118] used multi-accelerometer systems and extensive protocols to
detect a large amount of activities (26 and 52 respectively), exploiting the fact that
frequent misclassification of the activities will most likely result in small EE er-
rors, due to the similarity in the movement involved. Others, [29, 107] developed
either multi-sensor or single accelerometer systems able to recognize a smaller
set of activities with higher accuracy. Once the activity set has been selected, even
less agreement is found on how to predict EE given an activity. Some works as-
sign static Metabolic equivalents (METs, the ratio of metabolic rate during a specific
activity to a reference metabolic rate), combined with the subjects’ anthropomet-
ric parameters or fitness indicators such as the HR at rest [3]. Others applied a
linear regression equation for each model [123, 118, 107]. At this stage, it is not
clear whether combining METs values and regression models could provide bet-
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ter estimates [122], and whether each activity-specific regression model requires
the same parameters. As a matter of fact, differences in protocols and evaluation
measures make it impossible to compare the different approaches.

In this paper we present a methodology which aims at clarifying the relation
between physical activity patterns detectable with wearable sensors, and EE. Our
paper includes four main contributions. a) We propose a new methodology, which
combines METs values from the compendium of physical activities [2] with re-
gression equations, depending on the type of activity. b) We show that by care-
fully selecting activity-specific features able to explain differences in EE within the
activity, EE estimations can be improved. c) We develop a new algorithm applying
our methodology to the case of a single monitoring device able to measure accel-
eration and HR. d) We compare our algorithm to models used in epidemiological
studies, as well as to state of the art activity-specific EE methods.

2.2 Related work

Epidemiological studies

Accelerometers and HR monitors are the most commonly used single sensor de-
vices in epidemiologic studies. Accelerometers use activity counts, a unit-less mea-
sure representative of whole body motion, as the independent variable in the lin-
ear regression model developed to predict EE [52]. Shortcomings of single regres-
sion models are; a) the accuracy of the monitor is highly dependent on the activ-
ities used to develop the model, b) a single model does not fit all the activities,
since the slope and intercept of the regression model change based on the activ-
ity performed while data is collected [123, 118]. As a result, even when activity
counts are representative of EE, the output can be misleading. Additionally, ac-
tivity counts are defined differently by each sensor’s manufacturer (i.e. Actigraph
counts, and the equations derived from them, are not directly comparable to Acti-
cal or Actiheart counts [129]). HR monitors suffer from different problems, the most
common being the low accuracy during sedentary behavior [43], given that HR is
affected by many other factors (e.g. stress and emotions), and the need for indi-
vidual calibration [34]. Some of the issues have been tackled developing models
that use more than one linear regression equation, such as Crouter’s 2-regression
model [51] or Brage’s [35] branched equations. Even though these methods are
promising, especially the ones combining HR and ACC data, they have shown
limited improvements compared to ACC based simple linear regression models
[21, 115].

Methods based on machine learning

The latest monitors go towards two directions. Both strategies make use of pat-
tern recognition and machine learning techniques. Some authors applied these
methods to directly estimate EE from ACC features [60, 103]. Others, extended
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Crouter’s and Brage’s approach, performing activity recognition over a pre-defined
set of activities, and then applying different methods to predict EE [3, 29, 123, 107,
118]. Given the significant amount of work adopting activity recognition as a first
step to estimate EE, and the consistent improvements obtained [30], we believe
this is the best methodology to follow when developing such algorithms. The
principle behind activity recognition as a first step in EE estimation is that the
slope and intercept of the regression models change based on the activity per-
formed [123]. Tapia [118] developed a system composed of three accelerometers
and applied a different regression equation for each activity classified. The re-
gression models use ACC features as independent variables. The system can rec-
ognize about fifty activities with 50% accuracy in a subject-independent manner.
Root Mean Square Error (RMSE) was reduced from 2.7 to 1.0 METs compared to
Crouter’s approach. Bonomi [29] proposed a similar approach, but with a sin-
gle sensor device, mounted on the lower back. His system recognizes six clusters
of activities and assigns a MET value to each one of them. Total Energy Expendi-
ture (TEE) was validated against Doubly Labeled Water and showed accuracy up to
1MJoules/day when simple anthropometric parameters are used as independent
variables together with the assigned METs. van Hees [123] also used a single sen-
sor able to distinguish four activities, and then applied linear regression using a
measure of motion intensity as the independent variable (similarly to Tapia). Al-
binali [3] developed a multi-sensor system, composed of three accelerometers able
to distinguish twenty-two activities with 26% accuracy (subject-independent). He
extended Bonomi’s approach, developing a custom MET table, which takes into
account anthropometric variables, as well as the HR at rest, to predict EE more
accurately at the individual level. This method showed improvements up to 15%
compared to non-activity-based models. Rumo [107] also combined HR and ACC.
His system consists of three sensors, two accelerometers and a HR belt, and can
classify seven types of activities. Manual selection and the bootstrapping method
were used to determine which independent variables to adopt for the activity-
specific models. RMSE for the individual models ranged from 2.2 to 9.7KJoules.

Towards activity-specific EE estimation

In this section we analyze shortcomings of state of the art activity-specific EE algo-
rithms. More specifically, we believe the following limitations should be tackled;
a) Activity-specific models that assign METs values to each activity classified as-
sume that EE is constant within a cluster of activities [3, 29]. Nevertheless, most ac-
tivities can be performed at different intensities, and including information about
whole body motion or other features (ACC or HR) representative of variations in
EE within an activity, would improve the estimate. b) Activity-specific regression
models apply linear regression (e.g. using activity counts) even though there is
no whole body motion involved [118], and therefore the motivation for applying
linear regression, which is the linear relation between intensity of motion and EE,
does not hold anymore. c) Activity-specific models that assign custom METs val-
ues [3] should carefully select the independent variables used. For example HR at
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rest, which is often used as an index of cardiorespiratory fitness, should not be used
to predict EE at rest, since cardiorespiratory fitness is not related to Basal Metabolic
Rate (BMR). Care should be taken when considering anthropometric variables as
well. The energy cost of activities such as walking depends on body weight, while
the assumption does not apply to biking or sitting.

2.3 A new methodology

In this section we present our new approach to activity-specific EE modeling, and
apply this methodology to the case of imec’s ECG necklace. Our approach to
combine static METs with activity-specific regression equations takes four steps
to derive an EE model. First, we categorize activities into clusters meaningful
for EE estimates. Secondly, we separate sedentary and non-sedentary activities,
and assign a static EE value to sedentary ones. Then, we examine the motion
patterns of non-sedentary clusters to select the best independent variables for the
prediction models. Finally, we include anthropometric characteristics to take into
account differences in body size (see Figure 2.1).

Figure 2.1: Block diagram of the proposed methodology, and example of an ap-
plication.

Step 1 - Create activities clusters

Different postures provoke different levels of EE, due to the energy cost of holding
a specific posture [1] and should be individually distinguished. Activities clusters
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(i.e. groups of activities) should contain at least the basic human postures (e.g.
lying, sitting and standing), in order to avoid ambiguous results when using the
monitor to detect activities that were not part of the original training set. The
detection of more activities, which are often very specific (e.g. brushing teeth,
stretching, fidgeting hands, etc.) requires validation on a different population
and in real-life settings, to evaluate the sensitivity and specificity of such activities.
If more sensors are used, the distinction between sedentary and non-sedentary
activities while holding a specific posture (e.g. sitting resting or sitting lifting
weights) will most likely produce better EE estimates, since different models could
be applied. When designing an activity-specific EE algorithm, we recommend to
group activities into clusters containing at least the following postures: lying, sit-
ting and standing. For a specific posture, we recommend to distinguish ambu-
lation and transportation, as well as to separate between resting and non-resting
activities whenever possible.

Step 2 - Model sedentary clusters

Sedentary activities (e.g. lying down, sitting resting, watching TV, etc.) are such
that between-individual differences in EE cannot be further explained by ACC
features or HR data, but only by anthropometric variables. Therefore we assign
to sedentary-only clusters (i.e. clusters which contain only resting activities) a
static EE value, derived from the compendium of physical activities.

Step 3 - Model non-sedentary clusters

Our methodology splits modeling of non-sedentary clusters into two parts. Non-
sedentary activities may or may not involve specific patterns of motion repre-
sentative of changes in EE that an accelerometer can detect. For example, non-
sedentary activities such as some gym exercises or playing instruments might in-
volve no whole body motion or other specific motion pattern representative of
changes in EE (case A). Other non-sedentary activities (e.g. household, walking,
etc.) involve a different amount of whole body motion depending on the intensity
of the action (case B).

Case A: We predict EE for clusters of activities that do not involve whole body
motion or specific ACC patterns using only physiological signals as independent
variables.

Case B: For the remaining clusters of activities, the independent variables used
to predict EE will include ACC features as well. Which features to introduce will
depend on the activity performed. The question to answer in order to develop
a good model is the following: what ACC features are representative of changes
in EE within the cluster? Whole body motion is a good candidate for most of
the activities that involve significant movement (e.g. walking). Other activities,
such as biking, do not involve whole body motion, but show specific patterns that
ACC features can capture. When a cluster contains activities with similar motion
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patterns but different EE, physiological signals should be used in the model to
capture the remaining variance.

Step 4 - Include anthropometric characteristics and resting metabolic rate

Once activities have been clustered, split between sedentary and non-sedentary,
and the independent variables for each cluster have been selected, anthropomet-
ric characteristics and RMR should be taken into account as well. The type of
anthropometric characteristics used for each cluster model depends on the activ-
ity performed. For example, the EE of walking and running is related to body
weight, while non-weight bearing activities, such as biking, are not. If the depen-
dent variable of the regression models is TEE, RMR should be included in the
models.

2.4 Use Case - A necklace monitor

In this section we apply our proposed methodology to the use case of necklace
which combines ACC and HR data in a single monitoring device. Details on the
necklace and the experimental protocol can be found in Sec. 2.5 and 6.5.3.

Method Implementation

Step 1 - Create activities clusters

Different clusters of activities have been evaluated based on their impact on EE
and the ability of a single device placed on the chest to detect them. By using a
single monitoring device located at the chest it was not feasible to differentiate
between sitting and standing. Therefore we grouped activities in the following
clusters: lying, low whole body motion (LWBM), high whole body motion (HWBM),
walking, biking and running - see Table 2.1. LWBM and HWBM are clusters simi-
lar to the sitting-standing and active standing introduced in [29] to distinguish be-
tween sedentary and household activities with a single accelerometer, and are
useful in isolating sedentary behavior even when sitting and standing cannot be
distinguished.

Activities clusters classification: Four pattern recognition methods were tested
on the six clusters of activities: Classification Trees (C4.5), Artificial Neural Net-
works, Support Vector Machines, and Naive Bayes. The best performance was
obtained by the C4.5 classification tree, which was used for the EE model.

Speed estimation: We estimated speed using multiple linear regression. Inde-
pendent variables for walking and running included both ACC and anthropomet-
ric features. Biking speed was predicted by ACC features only.
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Table 2.1: Distribution of the activities into the six clusters used for activity recog-
nition.

Cluster name Original activities
Lying Lying down resting
LWBM Sitting resting, sitting stretching, standing stretching, desk

work, reading, writing, working on a PC, watching TV, sitting
fidgeting legs, standing still, bicep curls, shoulder press

HWBM Stacking groceries, washing dishes, preparing a salad, folding
clothes, cleaning and scrubbing, washing windows, sweep-
ing, vacuuming

Walking self-paced, self-paced carrying books, treadmill (flat:
3, 4, 5, 6 km/h, 4 km/h carrying weights, incline:
3, 5km/h, 5, 10%))

Biking Cycle ergometer, low, medium and high resistance level at 60
and 80 rpm

Running 7, 8, 9, 10 km/h on a treadmill

Step 2 - Model sedentary clusters

The only sedentary-only cluster of our model is lying, which was assigned a value
of 1 MET. The LWBM cluster contains resting activities mixed with non-sedentary
activities, therefore it was modeled as a non-sedentary cluster.

Step 3 - Model non-sedentary clusters

Using a single monitoring device sets limits regarding the number of distinguish-
able activities. Thus, the other activity clusters contain some variability in EE
and have been modeled as non-sedentary clusters (Case B in Sec 2.3). What ACC
features are representative of variations in EE within these cluster? LWBM and
HWBM are clusters involving diverse and irregular motion patterns, that we cap-
tured using features representative of intensity and variability of motion over the
three axes. Walking, running and biking involve repetitive patterns, that can be
easily captured using measures of motion intensity or motion speed (see Table 2.4
for details). All models include the Heart Rate above Rest (HRaR) to complement
acceleration features in capturing differences in EE, e.g. walking vs. walking car-
rying weights.

Step 4 - Include anthropometric characteristics and resting metabolic rate

Body weight was included for all the clusters involving ambulation (HWBM, walk-
ing and running). No anthropometric variables were included for lying, LWBM
and biking. RMR was in included in models not involving ambulation (lying,
LWBM and biking). We computed RMR using simple anthropometric variables
only (gender, age, weight and height). The Harris-Benedict formula estimates
BMR, which is between 10 and 20% lower than RMR [21]. Therefore, we chose
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Table 2.2: Study participants’ characteristics

characteristic mean ± std range
Age (years) 29.5± 4.6 24− 39
Height (m) 1.76± 0.11 1.59− 1.97
Weight (kg) 72.7± 14.7 50.2− 102.1
BMI (kg/m2) 23.3± 3.1 18.6− 28.7

to increase BMR by 15%, to estimate RMR.

2.5 Data collection and analysis

Participants

Participants were 19 (14 male, 5 female) healthy imec-nl employees from diverse
ethnic background - see Table 2.2. Imec’s internal Ethics Committee approved
the study, and each participant signed an informed consent form.

Instruments

ECG Necklace

The ECG Necklace [98] is a low power wireless ECG platform. The system relies
on an ultra-low-power ASIC for ECG read-out, and it is integrated in a necklace,
providing ease-of-use and comfort while allowing flexibility in lead positioning
and system functionality. It achieves up to 6 days autonomy on a 175 mAh Li-
ion battery. For the current study, the ECG Necklace was configured to acquire
one lead ECG data at 256 Hz, and ACC data from a three-axial accelerometer
(ADXL330) at 64Hz. The sensor was placed on the chest with an elastic belt. The
x, y, and z axes of the accelerometer were oriented along the vertical, medio-lateral,
and antero-posterior directions of the body, respectively. Two gel electrodes were
placed on the participant’s chest, in the lead II configuration. Data were recorded
on the on-board SD card to ensure no data loss. Data were also streamed in real-
time to provide visual feedback of the system functionality to the experimenter.

Indirect calorimeter

Breath-by-breath data were collected using the Cosmed K4b2 indirect calorimeter.
The Cosmed K4b2 weights 1.5 kg, battery included, and showed to be a reliable
measure of EE [85]. The system was manually calibrated before each experiment
according to the manufacturer instructions. This process consists of allowing the
system to warm-up, following a double calibration, first with ambient air and then
with calibration gas values. A delay calibration was performed weekly to adjust
for the lag time that occurs between the expiratory flow measurement and the gas
analyzers.
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Experimental design

Participants were invited for recordings on two separate days. They reported at
the lab at 8.00 a.m., after refraining from drinking (except for water), eating and
smoking in the two hours before the experiment. The protocol included a wide
range of lifestyle and sport activities, including sedentary and household activ-
ities. More specifically, day one consisted of activities selected as representative
of common daily leaving of many people in industrialized countries [21]. The
activities were: lying down, resting, sitting stretching, standing stretching, desk work,
reading, writing, working on a PC, watching TV, fidgeting legs, standing still, standing
preparing a salad, washing dishes, stacking groceries, folding clothes, cleaning the table,
washing windows, sweeping, vacuuming, walking self-paced, walking self-paced carrying
books (4.5 kg), climbing stairs up, climbing stairs down. Each sedentary and house-
hold activity was carried out for a period ranging from 4 to 12 minutes, with a 1
or 2 minutes break between the activities. Day two was carried out at the gym,
where subjects performed a series of more vigorous activities, including: step-test,
biceps curls, shoulder press, walking at 3,4,5 and 6 km/h on a treadmill, walking at 4 km/h
carrying a weight (5% of the subject′s weight), walking at 3 km/h, 5 and 10% inclination,
walking at 5 km/h, 5 and 10% inclination, cycle ergometer at 60 and 80 rpm, low, medium
and high resistance levels, running at 7,8,9 and 10 km/h. Activities carried out at the
gym were 4 minutes duration, except for free weights and running, which lasted
for 1 to 2 minutes.

Study design choices

We included a wide set of activities, ranging from sedentary to vigorous, recorded
in laboratory settings. Even though performance for activities that were not part
of the dataset should be assessed outside of the lab, there is currently no reference
system able to measure breath-by-breath EE in unconstrained settings. For exam-
ple, DLW – which is the standard reference system for EE in daily life – provides
only TEE after one or two weeks, averaging under and over-estimations. Thus,
it provides limited information about the algorithm performance under different
conditions, which is key in understanding advantages of activity-specific models.

Pre-processing

The dataset acquired in this work contains 52.6 hours of annotated data collected
from nineteen subjects, consisting of reference V O2, V CO2, three axial accelera-
tion and ECG.

ECG Necklace data

Raw ECG and ACC data were downloaded from the SD card of the ECG Necklace
using proprietary software developed by imec-nl. Raw data were exported into
csv files containing time-stamped ECG and acceleration samples. A Continuous
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Wavelet Transform based beat detection algorithm was used to extract R-R intervals
from ECG data, which output was examined to correct for missed beats [102].

Indirect calorimeter data

Breath-by-breath data acquired from the Comsed K4b2 was resampled at 0.5Hz.
EE was calculated from O2 consumption and CO2 production using Weir’s equa-
tion [128]. The first 1 or 2 minutes of each activity were discarded to remove non-
steady-state data.

Feature extraction

Features extracted from the ECG necklace raw data were used to derive activity
recognition and EE models. Activity recognition was performed on the six activity
clusters introduced in Sec. 6.6.1.1. An activity-specific EE model was derived for
each cluster. ACC data over the three axes were segmented in 4 second windows,
band-pass (BP) filtered between 0.1 and 10Hz, to isolate the dynamic component
caused by body motion, and low-pass (LP) filtered at 1 Hz, to isolate the static
component, due to gravity. Time and frequency features were extracted from each
window over the three axes of the LP and BP signal. Time features included mean,
mean of the absolute signal, magnitude, mean distance between axes, skewness, kurtosis,
variance, standard deviation, coefficient of variation, range, min, max, correlation, inter-
quartiles range, median and zero crossing rate. Frequency features included: spectral
energy, entropy, low frequency band signal power (0.1 − 0.75 Hz), high frequency band
signal power (0.75 − 10 Hz), frequency and amplitude of the FFT coefficients. These
features were selected due to high accuracy showed in past research [20, 29, 118].

Three features were extracted from R-R intervals, computed over 15 seconds
windows; mean, variance and standard deviation. Additionally, sleep HR was de-
rived from the HR while lying down [34], and used to extract the HRaR. R-R
intervals features were not included in the activity recognition model. Feature
extraction was performed in MATLAB (MathWorks, Natick, MA).

Feature selection

Feature selection for the activity recognition model was performed according to
different criteria. First of all, we removed features that depend on the range and
sensitivity of the accelerometer used to ease implementation of the algorithm on
different hardware. Secondly, we evaluated features based on the individual pre-
dictive ability of the feature alone, along with the degree of redundancy between
them. This step was implemented in Java using libraries provided by the WEKA
machine learning toolkit (University of Waikato, Hamilton, New Zeland).

The final feature set was manually selected, taking into account the output
from the automatic feature selection scheme when features showed high corre-
lation. It includes: mean of the absolute band-passed signal and inter-quartile range
— which capture the intensity of whole body motion, mean distance between axes
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and median — which capture posture information, variance and standard deviation
— measures of the spread of the distribution, zero crossing rate and main frequency
peak — which provide useful information on the repetitive pattern of certain ac-
tivities, low and high frequency band signal power. We manually selected features for
the EE models, according to the criteria illustrated in Sec. 2.4.

Statistics and performance measures

Activity recognition

Performance of the activity recognition model was evaluated independent of the
subject, using leave-one-subject-out-cross-validation. Metrics used are the sensitivity
and specificity of the recognition of each activity, as well as the percentage of the
correctly classified instances over the entire set used for validation. Walking, biking
and running speeds were evaluated according to the Root Mean Square Error.

Energy expenditure

Performance of the EE models were evaluated in a subject independent fashion,
developing regression models on all the subjects but one, and validating them
on the remaining one. The procedure was carried out N times (N = number
of subjects), and results were averaged. The performance measures used is the
RMSE, averaged within an activity and between subjects. Results are reported
only in terms of RMSE because of the great between-subject variability typical of
EE estimates, which makes averages predictions between subjects less informative
than the average error. Normalization procedures do exist (e.g. estimating in
kcal/kg), but do not take into account that EE during different activities is affected
differently by body weight.

Comparisons

Reported performance of EE models are highly dependent on the protocol used
to validate the algorithms, which makes it impossible to compare different mod-
els from published results. We re-implemented six methods; two simple methods
used in epidemiological studies, using ACC (method ACC [52]) or HR (method HR
[43]) as independent variable of the regression model, and four activity-specific
(AS) EE algorithms. The four models derive EE assigning static values to the de-
tected activity (method AS-static [29, 3]), using a single linear regression model
per activity and a measure of Motion Intensity (MI) as the independent vari-
able (method AS-MI [118, 123]), combining ACC and HR features following au-
tomatic variables selection (method AS-mixed [107] - where HR is always used,
and accelerometer features are part of one model only) or following the proposed
methodology (method AS-new). To the best of our knowledge, this is the first com-
parison of state of the art activity specific models on the same dataset.
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2.6 Results

Activity clusters classification

Subject independent classification accuracy of the classification tree used to select
the cluster model to apply to estimate EE was 92.9%. Table 2.3 shows the perfor-
mance of the classifier in terms of sensitivity and specificity for the six clusters.
RMSE for walking, running and biking speed were 0.31 km/h, 0.77 km/h and
8.43 rpm. Biking speed errors can be reduced increasing the frequency resolution
(i.e. using windows ¿ 4 seconds). Utilizing 4 seconds window our system cannot
detect speeds other than multiples of 0.25 Hz.

Table 2.3: Classification performance of the C4.5 classifier used to select the cluster
model to predict EE.

Activities Cluster Sensitivity Specificity
Lying 1 0.99
LWBM 0.91 0.97
HWBM 0.87 0.95
Walking 0.98 0.99
Running 0.99 0.99
Biking 0.91 0.99

Activity clusters models

We derived six models (see Table 2.4), applying the proposed methodology. The
total RMSE over the whole protocol, assuming a perfect classification of the activ-
ities, was 0.86 kcal/min. RMSE for lying, LWBM, HWBM, walking, running and
biking were 0.24, 0.42, 0.63, 1, 27, 1.06 and 1.29kcal/mim respectively. Misclassifi-
cation lowers performance to RMSE = 0.87 kcal/min. RMSE for the single clus-
ters after classification were 0.24, 0.42, 0.61, 1, 27, 1.07 and 1.44 kcal/mim. These
results confirm that the classifier can be used to select activity cluster models.

EE estimation performance

Table 2.5 shows results in terms of RMSE averaged over all of the activities and
per cluster. Simple methods used in epidemiological studies (methods ACC and
HR) show the lowest performance and will not be further discussed.

Results of the AS-static method showed improvements compared to non-activity-
specific models, but higher error compared to other activity-specific models, in all
of the clusters. Recognizing an activity and assigning a static EE value works well
on average but cannot capture the variability in EE within the cluster. Measures
of motion intensity (AS-MI) seem to outperform HR for low to medium intensity
activities (LWBM and HWBM), while activities where whole body motion is not
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Table 2.4: Predictors and models used to estimate EE for each activities cluster. BW
is body weight, MI is motion intensity, VAR is variance, STD is standard deviation,
IQR is inter-quartile range.

Cluster Model
Lying RMR× 1MET
LWBM −0.43 + 0.00068 RMR + 0.015 HRaR + 18.23 MIx +

15.35 MIy + 2.31 MIz − 11.83 V ARx − 25.71 V ARy −
5.03 V ARz

HWBM −2.42 + 0.029HRaR+ 5.23MIx+ 1.76MIy+ 1.25MIz−
33.10 V ARx− 39.92 V ARy − 9.28 V ARz + 14.96 STDx+
12.11 STDy + 1.76 STDz + 0.04BW

Walking −5.31 + 0.068HRaR+ 6.00MIx+ 0.087BW
Biking −6.78 + 0.0035RMR+ 0.073HRaR+ 0.026 speed
Running −10.62 + 0.027HRaR+ 5.47 IQRx+ 0.16BW

representative of EE, such as biking (see Fig. 2.6), were better modeled by methods
using HR as well (AS-mixed and AS-new).Walking patters were predicted accu-
rately by methods using ACC only features (AS-MI) when differences in EE could
be explained by motion patterns alone. The inability of these methods to detect
the higher energy cost of carrying weights or walking uphill results in decrease
of performance during these activities (see Fig. 2.5).

Overall, combining manually selected ACC and HR features, representative
of variations in EE within a cluster, shows significant improvements compared
to other methods. Estimates of compendium-based models (AS-static) were im-
proved by 31 %. Regression based models that use a measure of motion inten-
sity (AS-MI) or automatically selected variables (AS-mixed) as predictors, were
improved by 18 and 19 % respectively. Figures 2.2 to 2.6 show how combining
features specifically selected for a cluster, based on motion patterns involved in
the cluster, as well as physiological signals able to capture variations in EE when
motion is constant, provides better estimates compared to other activity-specific
methods, on almost all of the activities included in our protocol.
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Table 2.5: Overall and per cluster performance (RMSE) of the methods imple-
mented. Results are in kcal/min. AS is Activity Specific, MI is Motion Intensity.
Refer to Sec. 2.5 for details on the methods.

Cluster ACC HR AS-
static

AS-MI AS-
mixed

AS-new

Lying 0.65 1.21 0.29 0.26 0.24 0.24
LWBM 0.68 1.45 0.66 0.48 0.59 0.42
HWBM 0.75 1.32 1.19 0.80 0.89 0.63
Walking 1.55 1.65 1.66 1.49 1.43 1.27
Running 2.00 2.72 1.54 1.20 1.50 1.06
Biking 4.38 1.67 1.88 1.84 1.52 1.29
Overall 1.51 1.57 1.25 1.05 1.06 0.86
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Figure 2.2: Comparisons of AS methods for the activities included in the LWBM
cluster.
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Figure 2.3: Comparisons of AS methods for the activities included in the HWBM
cluster.

2.7 Conclusions and future work

We introduced a new methodology, which aims at clarifying the relation between
type of physical activity and EE. Our approach consists of four steps. First, we
separated activities into clusters meaningful for EE estimates. Secondly, we split



36
Chapter 2. Energy expenditure estimation using wearable sensors: a new

methodology for activity-specific models

0

0.5

1

1.5

2

2.5

3

R
M

S
E

 (
k
c
a

l/
m

in
)

 

 

7 km/h
8 km/h

9 km/h
10 km/h

AS−static

AS−MI

AS−mixed

AS−new

Figure 2.4: Comparisons of AS methods for the activities included in the running
cluster.
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Figure 2.5: Comparisons of AS methods for the activities included in the walking
cluster.

sedentary and non-sedentary activities, and assigned a static MET value to seden-
tary activities. The motion patterns of non-sedentary clusters were examined, to
select ACC features representative of intra-individual differences in EE within the
cluster. When no differences in motion were distinguishable within one cluster,
physiological signals were used to discriminate between different levels of EE. Fi-
nally, we included anthropometric characteristics to take into account differences
in body size. By applying this methodology to the development of a new algo-
rithm for a single monitoring device, we showed improvements in EE estimates,
ranging from 18 to 31% compared to state of the art activity-specific methods.

An aspect of interest that was not further investigated during this study is the



2.7 Conclusions and future work 37

0

0.5

1

1.5

2

2.5

3

3.5

4

R
M

S
E

 (
k
c
a

l/
m

in
)

 

 

low resistance 60rpm

low resistance 80rpm

medium resistance 60rpm

medium resistance 80rpm

high resistance 60rpm

high resistance 80rpm

AS−static

AS−MI

AS−mixed

AS−new

Figure 2.6: Comparisons of AS methods for the activities included in the biking
cluster.

personalization of EE models that use physiological signals. Physiological signals
(e.g. HR) differ greatly at the individual level, and require either individual cali-
bration or normalization. We used the heart rate above rest as the only heart rate
feature, to reduce between-subject differences in HR during different activities.
We are currently investigating the possibility to include other factors able to ex-
plain between-subject differences in HR during different activities (e.g. cardiores-
piratory fitness level), in order to further improve the activity-specific models.
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Abstract

Several methods to estimate Energy Expenditure (EE) using body-worn sensors exist,
however quantifications of the differences in estimation error are missing. In this paper,
we compare three prevalent EE estimation methods and five body locations to provide a
basis for selecting among methods, sensors number and positioning. We considered (a)
counts-based estimation methods, (b) activity-specific estimation methods using metabolic
equivalents (METs) lookup tables, and (c) activity-specific estimation methods using ac-
celerometer features. The latter two estimation methods utilize subsequent activity classi-
fication and EE estimation steps. Furthermore, we analyzed accelerometer sensors num-
ber and on-body positioning to derive optimal EE estimation results during various daily
activities. To evaluate our approach, we implemented a study with 15 participants that
wore five accelerometer sensors while performing a wide range of sedentary, household,
lifestyle, and gym activities at different intensities. Indirect calorimetry was used in par-
allel to obtain EE reference data. Results show that activity-specific estimation methods
using accelerometer features can outperform counts-based methods by 88% and activity-
specific methods using METs lookup for active clusters by 23%. No differences were found
between activity-specific methods using METs lookup and using accelerometer features
for sedentary clusters. For activity-specific estimation methods using accelerometer fea-
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tures, differences in EE estimation error between the best combinations of each number of
sensors (1 to 5), analyzed with repeated measures ANOVA, were not significant. Thus,
we conclude that choosing the best performing single sensor does not reduce EE estima-
tion accuracy compared to a five sensors system and can reliably be used. However, EE
estimation errors can increase up to 80% if a non-optimal sensor location is chosen.

3.1 Introduction

Energy expenditure (EE) is the most commonly used single metric to quantify PA.
Different methods to estimate EE have been developed in the past, from counts-
based estimation methods to activity-specific EE equations, developed using one
or more accelerometers. Counts-based estimation methods are developed by fit-
ting a single regression line to all the data, independently of the activity per-
formed. On the other hand, in activity-specific estimation methods, the estimation
process is split into two steps. First, activities are classified into clusters that group
them according to a certain criteria (e.g. EE level [19], motion patterns [29], etc.).
Secondly, an activity-specific model is applied to estimate EE. Activity-specific
EE models [9, 29, 118] showed higher performance compared to single models
[52, 60]. However, little agreement is found in literature regarding number of ac-
celerometers, location on the body, and the role of accelerometer features (e.g.
used for activity recognition only (activity-specific models using METs lookup),
or for both activity recognition and activity-specific EE models (activity-specific
using accelerometer features)) [3, 118]. Even though the use of a single sensor
is more practical, recent advances in sensor technology and the ease of integrat-
ing small accelerometers into shoes [91], watches or mobile phones, reduced ob-
trusiveness of wearable sensors, allowing researchers to deploy multi-sensor sys-
tems.

Determining the optimal number and on-body positioning of accelerometers
to accurately estimate EE requires addressing the following issues, that have not
been studied: 1) On activity recognition: what is the influence of activity type mis-
classification on EE estimation error when using activity-specific approaches?, 2)
On differences in EE within an activity cluster: which activity-specific approach per-
forms best during different activities? and 3) On EE estimation: how do activity
recognition accuracy and EE estimation error change based on sensors number
and positioning?

In this paper we analyze three prevalent EE estimation methods as well as
on-body sensors number and positioning to estimate EE. In particular, this paper
provides the following contributions:

1. We analyze EE estimation error for three common EE estimation approaches
(counts-based, activity-specific using METs lookup and activity-specific us-
ing accelerometer features). We show that activity-specific using accelerom-
eter features approaches outperform counts-based approaches and activity-
specific using METs lookup approaches for active clusters.
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2. We analyze all combinations of five accelerometers on-body positions and
evaluate their impact on activity recognition and EE estimation error. We
show that a single accelerometer is sufficient to maintain the lowest EE esti-
mation error when suitably placed.

3.2 Related work

Counts-based estimation methods

Counts-based methods were the first EE estimation algorithms developed. They
are simple linear regression models using as predictor activity-counts, i.e. a di-
mensionless unit representative of whole body motion. Counts-based models rely
on the relation between motion intensity close to the body’s center of mass and EE
[52]. However, single regression models are unable to fit all the activities, since
the slope and intercept of the regression model change based on the activity per-
formed while data is collected [123]. As a result, even when motion intensity
(activity counts) is representative of EE, the output can be inaccurate. Addition-
ally, the inability of these systems to recognize high or low body movement (e.g.
biking or arm exercises) caused high estimation error for activities not involving
whole body motion. In [51] the authors had to remove biking activities from their
evaluation, due to the inability of their system to capture EE changes when there
is limited motion close to the body’s center of mass.

Activity-specific estimation methods

The latest algorithms extended estimation methods based on single models by
performing activity recognition over a predefined set of activities - or clusters of
activities -, and then applying different methods to predict EE [9, 3, 118, 29, 123],
based on the activity detected (activity-specific EE approaches). Other machine
learning based methods were developed [60], trying to directly estimate EE from
accelerometer features, using for example neural networks [103, 60]. However
these approaches suffer from the same limitations of the counts-based estima-
tion methods, being unable to capture the peculiarities of the relation between
accelerometer features and EE during different activities [30]. The most common
activity-specific approaches are the following:

Activity-specific using METs lookup

One approach is to assign static MET values from the compendium on physical
activities [2] to each one of the clusters of activities [29, 3], and use anthropometric
features or other static features (e.g. heart rate at rest) to personalize the activity-
specific models for different individuals.
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Activity-Specific Using Accelerometer Features

Another approach is to apply a regression equation for each activity classified
[118, 123], extending counts-based approaches to multiple clusters of activities.
The regression models typically use accelerometer features and anthropometric
characteristics as independent variables.

Comparisons

Comparisons of estimation methods

[29] showed that activity-specific estimation methods using METs lookup out-
perform counts-based approaches when a single sensor is used. In [3], the au-
thors extended the static approach of [29], developing a custom MET table, which
takes into account the heart rate at rest, to predict EE, showing 15% improvement
in performance compared to the best counts-based estimation methods. In both
our previous work [9] and in [3], activity-specific estimation methods using METs
lookup and accelerometer features were implemented and compared. However,
while we proposed a combined approach using METs lookup for sedentary clus-
ters of activities and using accelerometer features for active clusters, the authors
of [3] opted for using METs lookup only. The two systems used a different sensor
setup. One single sensor on the chest was used in [9], while three sensors placed
on the upper arm, thigh and waist were used in [3]. The different activity types,
sensors number and positioning might have motivated the different choices made
by the authors. Thus, it is unclear what estimation method works best as well as
if different estimation methods require different sensors number.

Comparisons of sensors number and positioning

When it comes to sensors number and positioning, comparisons are lacking. Some
works investigated the accuracy of sensors placed on different parts of the body to
detect a specific set of activities [19, 95, 118, 20, 47]. However, none of these works
considered how sensors number and positioning affects EE. Some researchers
showed high accuracy in EE estimates adopting one sensor placed on the lower
back [29] or chest [9]. Others used two or three accelerometers [118, 3]. Small dif-
ferences between protocols used to collect data, algorithms evaluation metrics, as
well as the inclusion of extra sensors in only some of the systems (e.g. heart rate),
limit our understanding of what is the best solution in terms of sensors number
and positioning.

3.3 Analysis approach

This section covers the approach we used to analyze the role of different estima-
tion methods, sensors number and positioning for EE estimation.
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1. Estimation methods: we compared three common methods to estimate EE:
(a) counts-based, activity-specific using (b) METs lookup and using (c) ac-
celerometer features (see Fig. 9.1 and Fig. 3.2).
a) Counts-based estimation methods: These methods consist in a linear regres-
sion model. The model can be formalized in vector form as follows: y =
Xβ+ ε. In the context of EE estimation, y is the vector of target EE values, β
is the vector of regression coefficients, and X is the vector of input features.
The vector X contains p features, features that can be grouped into two cat-
egories: accelerometer features (Xacc) and anthropometric characteristics
(Xant).
b) Activity-specific estimation methods using METs lookup: They are composed
of two parts: activity recognition and activity-specific models. Assuming n
clusters of activities C = {c1, . . . , cn},∀ci ∈ C, ∃ yacti = Xactiβacti + ε.
Each yacti maps an activity cluster to EE. yacti is the vector of target EE values
for a specific cluster of activities, β is the vector of regression coefficients, and
Xacti is the vector of input features. The vector Xacti contains r features, a
MET value depending on the activity type, taken from the compendium of
physical activities (Xmeti ), and anthropometric characteristics (Xant), used
to personalize models between individuals.
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Figure 3.1: Block diagram of counts-based estimation methods. Accelerometer
and anthropometric features are used independently of the activity type.

c) Activity-specific estimation methods using accelerometer features: Similarly to
b), we assume n clusters of activities C = {c1, . . . , cn},∀ci ∈ C, ∃ yacti =
Xactiβacti + ε.Where each yacti maps an activity cluster to EE. As in b), yacti
is the vector of target EE values for a specific cluster of activities, β is the
vector of regression coefficients, and Xacti is the vector of m input features.
Features can be grouped into accelerometer features (Xacci ) and anthropo-
metric characteristics (Xant). Xacci differ from Xmeti introduced in b), since
they are not constant and change within a cluster.

2. Sensors number and positioning: we evaluated all possible combinations of 5
sensors (see Fig. 3.3 and Sec. 3.5 for details). Our analysis is structured as
follows:
a) Activity recognition: ∀ sensors number j ∈ {1, . . . , 5}, and ∀ combinations
k of j sensors, k =

(
5
j

)
, we implemented an activity recognition model to

classify clusters of activities ci ∈ C = {c1, . . . , cn}. Additionally, activity
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recognition accuracy was evaluated in the ability to discriminate between
sedentary and active clusters of activities. This analysis was performed to
understand to which extent misclassification of the activity class can affect
EE estimation accuracy for activity-specific EE models.
b) Differences in EE within an activity cluster: We assumed perfect activity
recognition (i.e. ∀ instance d, we assume cdp = cda where cdp is the pre-
dicted cluster, while cda is the actual cluster). Assuming n clusters of activ-
ities C = {c1, . . . , cn},∀ci ∈ C, ∀ sensors number j ∈ {1, . . . , 5}, and ∀ com-
bination k of j sensors, k =

(
5
j

)
, we implemented an activity-specific model

using accelerometer features; yi,j,k = Xi,j,kβi,j,k + ε. Where Xi,j,k is the
vector of the input features (as in III.1.c, features includeXacci,j,k andXant).
Xacci,j,k includes features from one of the k combinations of j sensors for the
activity i. On the other hand, as shown in section III.1.b, activity-specific es-
timation methods using METs lookup do not include accelerometer features
in the activity-specific models. Thus, once perfect activity recognition is as-
sumed there is no difference in EE estimation due to sensor number and
positioning. Assuming n clusters of activities C = {c1, . . . , cn},∀ci ∈ C, we
implemented one activity-specific regression model using METs lookup per
activity, as in Sec. III.1.b; yacti = Xactiβacti +ε. This analysis was performed
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Figure 3.2: Block diagram of the activity-specific estimation methods considered
for comparison in this work. a) shows approaches using METs lookup while b)
shows approaches using accelerometer features as predictors.

to understand in which activities accelerometer features can improve EE es-
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timation accuracy, compared to activity-specific estimation methods using
METs lookup, and if higher sensors number can reduce EE estimation er-
ror. c) EE estimation: Combining activity-recognition and activity-specific
EE models, we analyzed the impact of multiple accelerometers in EE es-
timation. Misclassification rates were taken into account by applying the
wrong activity-specific EE model in the estimation process. As in all activity-
specific models, ∀ci ∈ C = {c1, . . . , cn}, ∃ yacti = Xactiβacti + ε. Given
an instance d, we can apply n EE models, one ∀ci. if cdp 6= cda , the wrong
activity-specific EE model will be applied (e.g. yactp = Xactpβactp +ε instead
of yacta = Xactaβacta+ε). This analysis was performed to understand if more
sensors improve not only activity-recognition, as known from literature, but
also EE estimation accuracy, due to reduced misclassification rates.

Statistics and performance measure

Models were derived using data from all but one participants, and validated on
the remaining one (leave-one-participant-out cross validation). Performance of
the activity recognition models was evaluated using the average of the percent-
age of correctly classified instances (i.e. accuracy). Results for EE estimates were
reported using Root mean square error (RMSE), where the outcome variable was
gross EE expressed in kcal/min. A one-way repeated-measures within-subjects
ANOVA with six levels was used to compare EE models. The Tukey test was used
to perform pairwise comparisons. Paired t-tests were used to compare RMSE be-
tween the best and worst sensor for each number of sensors (1 to 5). Significance
was assessed at α < 0.05.

Figure 3.3: ECG Necklace and on-body accelerometer positioning.
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3.4 Implementation

Activity type clusters

We grouped all recorded activities into two categories to separate sedentary and
active behavior. We included lying (lying down resting), sitting (sitting resting, desk
work, reading, writing, working on a PC, watching TV) and standing (standing rest-
ing, standing cooking) postures in our sedentary clusters. Active clusters were four,
one representative of household activities, namely the Òhigh whole body mo-
tion (HWBM)Ó cluster (stacking groceries, washing dishes, folding clothes, cleaning
and scrubbing, washing windows, sweeping, vacuuming) and three representative of
locomotion and active transportation, such as walking (self-paced, self-paced carrying
books, treadmill flat: 3, 4, 5, 6 km/h, incline: 3, 5km/h, 5, 10%), biking (cycle ergometer,
low, medium and high resistance level at 60 and 80 rpm) and running (7, 8, 9, 10 km/h
on a treadmill).

Features extraction and selection

Features extracted from the sensors’ raw data were used to derive activity recog-
nition and EE models. Accelerometer data from the three axes of all five sensors
were segmented in 4 seconds windows, band-pass (BP) filtered between 0.1 and
10 Hz, to isolate the dynamic component caused by body motion, and low-pass
(LP) filtered at 1 Hz, to isolate the static component, due to gravity. Feature se-
lection for activity recognition was based on correlation, due to the hypothesis
that a good feature set includes features correlated with the class, but uncorre-
lated to each other. The final feature set included: mean of the absolute BP signal,
inter-quartile range, mean distance between axes, median, variance, standard deviation,
zero crossing rate, main frequency peak, low and high frequency band signal power. Fea-
ture selection for EE was based on how much variation in EE each feature could
explain within one cluster. The process was automated using linear forward se-
lection. Features to be selected depended on the combination of sensors consid-
ered for a model. Additionally, anthropometrics features (body weight and rest-
ing metabolic rate (RMR), estimated with the Harris-Benedict formula [59]) were
added depending on the cluster, following the methodology for activity-specific
EE models presented in [9].

Activity recognition

We adopted a constant set of parameters for sliding window and classifier type
of the activity recognition. We selected a time window of 4 seconds, which is
short enough to detect short breaks in sedentary time, and long enough to cap-
ture the repetitive patterns of some activities (e.g. walking). Given the positive
results in past research on activity recognition, we selected Support Vector Ma-
chines (SVMs) as classifiers. For the SVMs, we used a polynomial kernel with
degree 5 (λ = 10, C = 1), fixing these parameters for all models.
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Energy expenditure

Counts-based Methods

We implemented single regression models using data from all activities and mo-
tion intensity (i.e. mean of the absolute BP signal summed over the three axis) as the only
accelerometer feature, together with anthropometric characteristics (body weight
and RMR), as typically done in epidemiological studies (see Fig. 9.1).

Activity-specific estimation methods using METs lookup

Activity-specific estimation methods using METs lookup relied on the activity
recognition system of Sec. 3.4. METs values were used together with anthropo-
metric features (body weight and RMR), for the activity-specific linear regression
models (see Fig. 3.2.a). METs values were chosen based on compendium values
for the activities included in each cluster, resulting in 1 for lying, 1.3 for sitting and
standing, 3.5 for HWBM, 3 for walking, 6.7 for biking and 11 for running.

Activity-specific estimation methods using accelerometer features

Within one activity cluster, EE can be estimated using other features, representa-
tive of EE changes within the activity cluster [118, 123, 9]. Depending on sensors
selected, we created different EE activity-specific linear models, using the selected
set of features for those sensors (see Fig. 3.2.b).

3.5 Evaluation study

Participants

Participants were 15 (11 male, 4 female) healthy individuals, mean age 29.8 ±
5.2 years, mean weight 71.8 ± 15.9 kg, mean height 1.75 ± 0.10 cm, mean BMI
23.2 ± 3.0 kg/m2. Imec’s IRB approved the study. Each participant signed an
informed consent form.

Instruments

Body area network

The sensor platform used was the ECG Necklace. Five ECG Necklaces were syn-
chronized in a wireless network [7] (see Fig. 3.3). One ECG necklace was placed
on the chest (C) and configured to acquire one lead ECG data at 256 Hz, and ac-
celerometer data at 64 Hz (ADXL330). Sampling frequency was chosen as 64 Hz
since it is considered to be much higher than typical human motion. The other
four ECG Necklaces were configured to acquire only accelerometer data at 64Hz
and placed on the dominant ankle (An), dominant thigh (T), dominant wrist (W)
and waist (Wa) - at the right hip. All sensors were attached to the body using
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elastic bands. ECG data was not used for this study. Activity type was annotated
manually by experimenter.

Indirect calorimeter

Breath-by-breath data were collected using the Cosmed K4b2 indirect calorime-
ter. The Cosmed K4b2 weights 1.5 kg and showed to be a reliable measure of EE
[85]. The system was manually calibrated before each experiment according to
the manufacturer instructions.

Experimental design

Participants were invited for recordings on two separate days. They reported to
the lab at 8:00 am, after refraining from drinking (except for water), eating and
smoking in the two hours before the experiment. The protocol included a wide
range of sedentary, lifestyle and sport activities. Each activity was carried out for
a period from 4 to 12 minutes, except for running (1 to 4 minutes). The first minute
of each recording was removed to discard non-steady-state data.

3.6 Results

Given the high number of models implemented, we report only results for the
best combinations of 1 to 5 sensors (Fig. 6.3.a-b, Fig. 8.2.a-b and Fig. 9.2.a), as
well as information on exactly which sensors provide these optimal performance,
together with the worst performance obtained with the same number of sensors,
for comparison.

Estimation methods

Fig. 6.3 shows the effect of different feature sets on EE estimation performance
for activity-specific EE models, assuming perfect activity recognition.Only one
activity-specific model using METs lookup is needed for comparison, since these
approaches don’t use accelerometer features. The RMSE obtained for activity-
specific estimation methods using METs lookup was 1 kcal/min, while for activity-
specific estimation methods using accelerometer features it ranged between 0.84
and 0.86 kcal/min (18% error reduction, p < 0.05, Fig. 6.3.a). 23% error reduc-
tion was shown for active clusters using accelerometer features (Fig. 6.3.b). Fig.
8.2 shows performance of the EE estimation models in combination with activ-
ity recognition, as well as counts-based estimation methods. For clarity, results
for the activity-specific estimation methods using METs lookup were omitted in
Fig. 8.2. Activity-specific estimation methods using METs lookup rely on the
same activity recognition algorithms used by the activity-specific method using
accelerometer features, thus the METs-based method would still perform sub-
optimally. The RMSE for activity-specific estimation methods using accelerome-
ter features ranged from 0.85 to 0.89 kcal/min. RMSE for counts-based estimation
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methods was between 1.6 and 2.6 kcal/min depending on sensor position (88%
error increase for the best-performing sensor, C, p < 0.05). The error obtained
using the counts-based estimation was significantly higher compared to activity-
specific models even when counts were considered separately for sedentary and
active clusters (Fig. 9.2.b).

Figure 3.4: EE estimation RMSE for sedentary and active clusters when perfect
activity recognition is assumed in activity-specific estimation methods. Boxplots
1 to 5 in plot a) as well as 1S−1A to 5S−5A on plot b) concern activity-specific es-
timation methods using accelerometer features, while an activity-specific model
using METs lookup is shown as METs on plot a) andMS−MA on plot b). ∗ indi-
cates significant differences between the annotated model (activity-specific model
using METs lookup) and all of the other models, i.e. the ones using accelerom-
eter features (p < 0.05). Λ indicates significant differences between models the
annotated models, i.e. 4S (4 sensors, sedentary clusters) and 5S (5 sensors, seden-
tary clusters) and model sedentary model when only one sensor is used, i.e. 1S
(p < 0.05). RMSE for the best and worst activity-specific model using accelerom-
eter features for each number of sensors is shown on the bottom row. C is Chest,
T is Thigh, An is Ankle, W is Wrist and Wa is Waist.

Sensors number and positioning

Sensors number and positioning is evaluated according to the three criteria of
Sec. 9.3: (1) activity recognition, 2) differences in EE within an activity cluster and 3)
EE estimation).
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Figure 3.5: EE estimation RMSE for sedentary and active clusters in activity-
specific estimation methods using accelerometer features, after activity classifi-
cation. Activity-specific estimation methods using METs lookup are not shown
due to sub-performing results. Comparison with a counts-based model is shown
in a) as counts-based and b) as CS and CA. ∗ indicates significant differences be-
tween the annotated counts-based model and all of the other models, i.e. activity
specific models using accelerometer features (p < 0.05). RMSE for the best and
worst activity-specific models using accelerometer features for each number of
sensors is shown on the bottom row. C is Chest, T is Thigh, An is Ankle, W is
Wrist and Wa is Waist.

Figure 3.6: Activity recognition accuracy for sedentary (average accuracy of lying,
sitting and standing) and active (average accuracy of HWBM, walking, biking and
running) clusters, and their average. Classification accuracy for different sensors
number and positioning are shown on the right. C is Chest, T is Thigh, An is
Ankle, W is Wrist and Wa is Waist.

Activity Recognition

Fig. 9.2.a shows the performance of the activity recognition models. Additionally,
the impact of sensor location (best VS worst for each number of sensors) is shown
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(Fig. 9.2.b-e). Accuracy varied between 85% for 1 sensor - and 98% for 3 or more
sensors (Fig. 6.a). Accuracy for active clusters was always above 98%, with dif-
ferences of only 1% between the best single sensor system and a 5 sensors body
area network (Fig. 9.2.a). Sedentary clusters accuracy ranged between 69.9 and
97%. Sensor location affected the accuracy by 12% for a single sensor, while the
decrease in performance was reduced to 7%, 5% and 4% for two, three and four
sensors respectively (see Fig 9.2.b-e).

Differences in EE within an activity cluster

Fig. 6.3 shows the effect of different feature sets on EE estimation performance
for activity-specific estimation methods using accelerometer features, assuming
perfect activity recognition. No significant differences were found when differ-
ent locations on the body were considered to extract activity-specific features.
However, differences are found when analyzing separately sedentary and active
clusters, showing higher errors in sedentary clusters using accelerometer features
from four or five sensors (see Fig. 6.3.b).

EE estimation

Fig. 8.2 shows performance of the EE estimation models in combination with
the activity recognition. In this analysis, differences in performance are due to
a) higher misclassification rates of models based on a smaller number of sensors
and b) different feature sets used for activity-specific estimation methods using ac-
celerometer features, depending on the sensors that are part of the system. Sensor
location analysis shows the Chest sensor as the best single sensor for EE estima-
tion, while the Wrist sensor seems to perform worse than any other combination
(Fig. 8.2.c-f).

3.7 Discussion

To the best of our knowledge, this is the first time that state of the art activity-
specific EE estimation methods are evaluated to determine benefits of using mul-
tiple accelerometers for EE estimation. For activity-specific estimation methods,
evaluating the benefit of multiple sensors is important, since additional accelerom-
eters can contribute differently. Firstly, additional sensors can improve the accu-
racy of the activity recognition model. Thus, reducing EE estimation error due
to the selection of the wrong activity-specific EE model. Secondly, features from
more than one sensor could better explain the EE variance within one cluster of
activities.

Estimation methods

Our estimation results show that activity-specific estimation methods using ac-
celerometer features outperform counts-based estimation methods by 88% and
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activity-specific estimation methods using METs lookup by 18%. Counts-based
estimation methods were outperformed by the activity-specific estimation, re-
gardless of sensor location, with RMSE between 1.6 kcal/min at the chest to 2.6
kcal/min at the wrist. The results reflect a similar behavior to what was observed
for activity-specific models, where wrist-based models were poorly performing
due to weak relation between movement and EE. The inability of counts-based
estimation methods to fit all activities is further reflected by the estimation error
when considering sedentary and active clusters separately. Activity-specific es-
timation methods using accelerometer features provide no advantage compared
to activity-specific estimation methods using METs lookup for sedentary clusters,
but only for active clusters (23% error reduction). This is due to the fact that active
clusters can be performed at varying intensities (e.g. walking at different speeds),
and assigning static METs values prevents the model from capturing these differ-
ences in intensity within one cluster of activities. However, sedentary clusters of
activities cannot be performed at varying intensities (e.g. sitting or lying down),
making it possible to estimate EE accurately using METs lookup approaches. We
assume model development did not lead to overfitting given the similar level of
error variability between simple and complex methods. We expect that overfit-
ting was avoided as the data from one participant was eight used for training or
evaluation.

Sensors number and positioning

Our results on the sensors number and positioning point out three main find-
ings: 1) On activity recognition: if properly chosen, two sensors are sufficient to
provide accurate physical activity type assessment (see Fig. 9.2). 2) On differences
in EE within an activity cluster: Adding features from more than one sensor in the
activity-specific models using accelerometer features does not improve the accu-
racy of the EE estimate (see Fig. 6.3). 3) On EE estimation: Applying a wrong EE
model due to misclassification of the activity type has a small (non-statistically
significant) impact on the EE estimate accuracy Ð provided that an optimal sen-
sor positioning is chosen (e.g. the Chest sensor, see Fig. 8.2). Thus, choosing
the best performing single sensor does not reduce performance for EE estimation
compared to a five sensors system.

Activity recognition

Our results on the sensor number for activity recognition confirm previous works
that considered multiple accelerometers [20, 95, 118, 47]. Adding more sensors
improves accuracy, until a plateau is reached, when two or more sensors are used.
In our case 97/98% accuracy using Chest and Wrist or Chest and Thigh sensors.
It is of interest for our analysis, how activity recognition influences EE estimates
as discussed below.
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Differences in EE within an activity cluster

Our second finding concerns the accelerometer features needed to explain differ-
ences in EE within one cluster. To determine such features, we developed EE mod-
els assuming perfect activity recognition (see Fig. 6.3). We showed that accelerom-
eter features from one sensor are sufficient to explain differences in EE within one
cluster of activities. This finding can be explained by the fact that within one clus-
ter of activities (for example walking) the variation in EE is explained mainly by
the level of motion intensity of the whole body. Other features, such as motion in-
tensity of the wrist sensor, can lead to errors, since high level of motion (e.g. while
writing), do not correspond to high EE. This reasoning might explain why in Fig.
6.3 the error is shown to increase when features from 4 or 5 sensors are used for
sedentary clusters (Fig. 6.3.b).

Even though adding features from more sensors does not reduce EE estimate
error, accelerometer features from at least one sensor should be used for active
clusters (23% error reduction compared approaches using METs lookup). In a
recent review on activity-specific EE estimation [122], the controversy between
applying static values (i.e. MET values) and the need of including accelerometer
features in linear models had been raised. Past research showed inconsistency in
the approach used for activity-specific models even after implementing and com-
paring estimation methods using METs lookup or accelerometer features [3, 9].
With this analysis we show that accelerometer features are relevant only for ac-
tive clusters, and most importantly this is true regardless of the number of sensors
used (see Fig. 6.3.b). Our findings are consistent with our previous work using
one sensor [9], indicating that the best approach to obtain high accuracy and limit
model complexity, is to use a combined approach. Activity-specific models using
METs lookup can be used for sedentary activities, where static METs values and
anthropometric features are sufficient to accurately estimate EE.

EE estimation

Provided that the best performing sensor is chosen, no significant error reduction
was found when more than one sensor was used for EE estimation. This is due
to the fact that errors are mainly due to misclassification of posture (one single
sensor is unable to recognize all of the three postures in the sedentary cluster),
resulting in applying a very similar activity-specific EE model. Thus, the EE esti-
mation RMSE for a single sensor placed on the Chest is similar when compared
to a 5 sensors system (no statistically significant difference), even if activity clas-
sification accuracy is decreased by up to 13% on average, and 28% for sedentary
clusters. This is an important finding since past work showed good accuracy us-
ing one single accelerometer and activity-specific approaches [29, 9], but no previ-
ous work could compare performance of EE estimation methods when different
sensors number and positioning were used, preventing us from understanding
if systems relying on multiple sensors for activity recognition [3, 118] could still
provide better results.
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Limitations

Performance for activities that were not part of the dataset should be assessed out-
side of the lab. However, there is currently no reference system able to measure
breath-by-breath EE in unconstrained settings. Only by using indirect calorime-
try and supervised settings we can record data which allows us to analyze how
multiple sensors affect the EE estimate process in both activity recognition and
intra-individual differences within one activity. Another limitation was to limit
the number of MET values used for our analysis to the ones associated to the
activity clusters, while more fine grained values could be used for certain activi-
ties (e.g. walking at different speeds). However we believe that using individual
MET values for activities may not generalize, since some activities (e.g. related to
household) show different EE but cannot be accurately sub-divided when using
a limited number of sensors. Hence some activity clusters would still require a
single MET value to be used, while actual EE varies widely.Finally, due to the size
and attachment modality of the ECG Necklace we were limited to analyzing posi-
tions where the ECG Necklace could be practically attached. While we explored
different on-body sensor locations, we had to exclude others that showed promis-
ing results in previous research (e.g. the ear) [19, 31], due to practical limitations
with our system.

3.8 Conclusions

We suggest using one single sensor close to the body’s center of mass (chest or
waist), together with a combined activity-specific estimation method, for accu-
rate and unobtrusive EE estimation. The combined estimation method should
be composed of activity-specific models using METs lookup for the sedentary ac-
tivity clusters, and activity-specific models using accelerometer features for the
physically active clusters. This approach showed to be both practically feasible,
since it limits the number of sensors to one, and accurate in terms of EE estimation
accuracy.



Part II: Physiological data normalization



56 Chapter 3. Part II: Physiological data normalization



4
Personalizing energy expenditure estimation

using a cardiorespiratory fitness predicate

M. Altini, J. Penders, O. Amft
Adapted from: Pervasive Computing Technologies for Healthcare (PervasiveHealth),
2013 7th International Conference on. IEEE, 2013, pp. 65-72.

Abstract

Accurate Energy Expenditure (EE) estimation is key in understanding how behavior and
daily physical activity (PA) patterns affect health, especially in today’s sedentary society.
Wearable accelerometers (ACC) and heart rate (HR) sensors have been widely used to mon-
itor physical activity and estimate EE. However, current EE estimation algorithms have
not taken into account a person’s cardiorespiratory fitness (CRF), even though CRF is the
main cause of inter-individual variation in HR during exercise. In this paper we propose a
new algorithm, which is able to significantly reduce EE estimate error and inter-individual
variability, by automatically modeling CRF, without requiring users to perform specific
fitness tests. Results show a decrease in Root Mean Square Error (RMSE) between 28
and 33% for walking, running and biking activities, compared to state of the art activity-
specific EE algorithms combining ACC and HR.

4.1 Introduction

New technologies, seamlessly integrated in everyone’s life, able to monitor ob-
jectively and non-invasively our behavior, can provide unprecedented insights
on aspects of behavior related to physical activity and health status. Among the
technologies used to objectively monitor PA, accelerometers (ACC) and heart rate
(HR) monitors are the most widespread [34, 35, 43, 9, 3, 107, 29, 118]. For ACC,
the rationale behind their adoption is the linear relation between motion close to
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the body’s center of mass, and energy expenditure (EE). On the other hand, HR
shows a strong correlation with EE, due to the relation between oxygen consump-
tion, HR and EE. Main limitations of these technologies are the inability of single
accelerometers close to the body’s center of mass to detect low and upper body
motion, and the low accuracy of HR monitors during sedentary behavior, as well
as the need for individual calibration. Some of these issues have been tackled by
developing activity-specific EE algorithms [9, 3, 107, 29, 118].

By adopting an activity-specific approach, some HR limitations can be easily
overcome. Issues due to the weak relation between HR and EE during seden-
tary time, where HR can be affected by artifacts due to emotions and stress, can
be avoided by including HR only in some activity-specific equations (e.g. when
moderate to vigorous PA is performed). The need for individual calibration of
HR-based algorithms is motivated by the substantial inter-individual differences
in the relation between HR and EE. During moderate to vigorous PA, differences
in HR between individuals performing the same activity are mainly due to car-
diorespiratory fitness (CRF). CRF, is not only the main cause of inter-individual
variability, but also inversely related with several health outcomes, such as car-
diovascular disease and coronary artery disease, being one of the most important
health markers [81]. Combined with activity-specific algorithms, information on
CRF could provide more accurate EE estimation. Nevertheless, algorithms in the
past tackled CRF-related variance only by means of individual calibration [35],
and no algorithm includes information on CRF in the EE estimation equations.
For many practical applications individual calibration is not feasible since it would
require every user to perform a calibration test.

In this paper, we present a new activity-specific EE algorithm that incorporates
CRF-related variance by normalizing HR. The HR normalization is performed by
estimating walking speed and activities, and integrating anthropometric informa-
tion. In particular, the following contributions are made:

1. We detail the HR normalization procedure that, based on activities carried
out during daily life (rest, walking at different speeds), can automatically
estimate CRF-related variance. Thus, our approach does not require users
to do specific fitness tests to estimate CRF.

2. We compare EE estimation performance of a standard current state of the
art activity-specific algorithm with our personalizing version considering
individual CRF. For this purpose, we used a dataset including 44 activities
recorded with 29 subjects.

This paper is structured as follows. Related work and the relation between
CRF, HR and EE are discussed in Sections 8.2 and 4.3. Section 4.4 introduces our
approach to CRF estimation and HR normalization. The implementation of our
approach is described in Section 6.4, while the measurement setup and data col-
lection process can be found in Section 4.6. Results and conclusions are presented
in Sections 4.7 and 4.8.
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4.2 Related work

4.2.1 Epidemiological research

Accelerometer and HR monitors are the most commonly used single sensor de-
vices in epidemiological studies [34, 35, 43, 21]. ACC use activity counts, a unit-
less measure representative of whole body motion, as independent variable in
the linear regression model developed to predict EE [34]. Shortcomings of single
regression models are; a) the accuracy of the monitor is highly dependent on the
activities used to develop the linear model, b) a single linear model does not fit all
the activities, since the slope and intercept of the regression model change based
on the activity performed while data is collected. As a result, even when activity
counts are representative of EE, the output can be misleading.

HR monitors suffer from different problems. First, HR monitors are typically
inaccurate during sedentary behavior, given the fact that HR is also affected by
non-activity related factors, such as stress and emotions [43]. Artifacts at rest were
tackled by means of the so called HR-flex point, a point above which EE is estimated
using an activity-model, while below which EE is estimated using a rest value or
a sedentary-model [43]. Basically, a first version of today’s activity-specific algo-
rithms [9, 3, 107, 29, 118]. Secondly, HR monitors need individual calibration to
perform accurately [34]. The high correlation between HR and EE within one in-
dividual, which motivated researchers in using HR monitors to estimate EE since
the 80s, is indeed peculiar of a specific individual, and changes substantially be-
tween subjects. Even the HR-flex point, is often determined specifically for one
individual, by for example averaging the HR at rest and the HR while walking at
a certain speed.

4.2.2 Activity-specific EE estimation

The latest monitors extended approaches based on simple linear regression mod-
els performing activity recognition over a predefined set of activities, and then
applying different methods to predict EE [9, 3, 107, 29, 118], based on the activ-
ity. The principle behind activity recognition as a first step in EE estimation is
that the slope and intercept of the regression models change based on the activ-
ity performed. One approach [118] is to apply a different regression equation for
each activity classified. The regression models typically use ACC features and
anthropometric characteristics as independent variables. Another approach is to
assign static values (e.g. Metabolic Equivalents (METs) from the compendium
on physical activities) to each one of the clusters of activities. Assigning static
values showed limitations during moderate to vigorous activities in a recent com-
parison between activity-specific models, since static values cannot capture intra-
individual differences in EE [9]. Intra-individual differences in EE for an activity
are caused by the fact that moderate to vigorous activities can be carried out at
different intensities (e.g. walking at different speeds), resulting in different levels
of EE. Activity-specific linear regression models require ACC and HR features to
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capture these differences [9].

Some authors included HR features as well in the activity-specific linear mod-
els. In [3], a multi-sensor system composed of three accelerometers was devel-
oped. The authors extended the static approach of [29], developing a custom MET
table, which takes into account anthropometric variables, as well as the HR at rest,
to predict EE. In [107] HR and ACC were combined as well. The system consisted
of three sensors, two accelerometers and a HR belt, and could classify seven types
of activities. Inter-individual differences in HR were not taken into account.

Activity-specific multiple linear regression models combining ACC and HR
features showed consistent improvements in EE estimation accuracy compared
to algorithms using static or ACC-only features [9]. However, inter-individual
differences in HR due to CRF are not tackled by any activity-specific algorithm.
One approach used to reduce inter-individual differences in HR during daily life,
was proposed in [35]. The authors use the Heart Rate above Rest (HRaR), instead
of the HR, as a predictor for their linear models. Using the HRaR does bring each
subject to the same baseline, but it introduces a simple offset, which is unable to
capture how HR evolves during physical exercise, as a result of differences in CRF.

4.2.3 CRF estimation

Even though the effects of CRF on HR are widely recognized, no algorithm up to
date includes or models CRF to estimate EE. On the other hand, different groups
proposed methods and algorithms to measure and estimate CRF alone [62, 55].
CRF is typically measured by means of a maximal oxygen uptake test. Maximal
oxygen uptake (V O2 max) is widely accepted as the single best measure of car-
diovascular fitness and maximal aerobic power. Tests measuring V O2 max can
be dangerous in individuals who are not considered normal healthy subjects, as
any problems with the respiratory and cardiovascular systems will be greatly ex-
acerbated. Thus, many protocols for estimating V O2 max have been developed
for those for whom a traditional V O2 max test would be too risky [62, 55]. Sub-
maximal V O2 max tests generally are similar to a V O2 max test, but do not reach
the maximum of the respiratory and cardiovascular systems. On the other hand,
non-exercise V O2 max estimation uses information about the person’s anthro-
pometric characteristics, activity level (derived with questionnaires), and HR at
rest features to estimate CRF. Often, the predicted maximal HR is used as well.
The shortcoming of this approach is that maximal HR is typically predicted using
age only, and HR at rest is weakly related to CRF. Higher accuracy was shown
by sub-maximal tests involving actual exercise, for example biking or running at
sub-maximal rates.

Even though sub-maximal tests are less dangerous and showed good accuracy
in past research [62], they are still affected by some limitations; a) a specific test is
required to determine CRF, b) the specific test should be re-performed every time
CRF needs to be assessed, c) in the context of EE estimation, it is not clear how to
include information about CRF.
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Figure 4.1: Relation between EE and HR in different subjects during a sequence
of different PAs. Individual correlations between EE and HR are 0.97 and 0.96
respectively. The absolute EE levels are similar due to similar body weight. HR
differs significantly between the subjects during moderate to vigorous activities.

4.3 Fitness and heart responses

This section covers more in detail the relation between CRF, HR and EE, which
motivates our approach to personalized EE estimation. The main cause of differ-
ences in the HR-EE relation during activity is CRF. An individual with higher CRF
(i.e. more fit), will have a lower HR during exercise, compared to an individual
with low CRF. Fig. 9.1 shows the relation between HR and EE for two subjects dur-
ing a series of intense and sedentary activities. Individual correlations between
HR and EE are above 0.96 for both of them. The figure shows clearly that for two
subjects with similar body weight (subject 17, body weight: 71.2 kg, and subject
20, 72 kg), EE is almost the same, while HR is very different, due to higher fitness
level of subject 20 (subject 17 is inactive while subject 20 is a trained runner). Since
EE is derived from HR, typically by means of a linear model, estimating EE from
HR during exercise results into substantially high over and under-estimations. By
individually calibrating the system, the relation between HR and EE becomes pe-
culiar for an individual, since it is derived specifically for him/her, and not using
data collected on a different sample of the population. Unfortunately, individual
calibration is not practically feasible since it requires each new user to perform lab
tests in supervised settings, using expensive devices such as an indirect calorime-
ter. Thus, alternative methods to tackle the problem are needed to objectively and
accurately estimate EE at the individual level, and not only as group averages.
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4.4 Approach

This section covers our approach to CRF estimation and its integration into EE
multiple linear regression models, necessary to reduce EE estimation error due to
inter-individual differences in the relation between HR and EE. To this aim, we
developed the concept of automatic Heart Rate Feature Normalization. We propose
the following steps to estimate EE using HR normalized by level of CRF:

1. Build a model to derive a normalization factor automatically during daily
life, without requiring specific tests.

2. Use the normalization factor to normalize HR.

3. Use the normalized HR as predictor in activity-specific EE estimation equa-
tions.

Figure 4.2: Architecture of an activity-specific EE estimation system. ACC features
are used to recognize an activity, and to estimate EE for each model, together with
anthropometric characteristics and the normalized HR. The Heart Rate Features
Normalization block, shown in gray, is included in our model to remove confound-
ing effects in the relation between HR and EE, due to CRF.

When normalizing HR, we are not only interested in the maximal HR an in-
dividual can reach, but in the HR the different individuals would reach when
performing the same activity, at the same workload. We hypothesize that this
HR at a constant workload is representative of CRF, and can be used to normal-
ize HR. We selected running at 10km/h as the constant workload. Thus, our HR
normalization factor is the HR while running at 10km/h. Running at maximum
10 (for females) to 12 (for males) km/h, together with anthropometric character-
istics, could explain 88% of the variance in V O2 max in past research on V O2 max
estimation [62], showing that it is a normalization factor that well represents CRF.
We implemented a system able to derive the CRF-related normalization factor
automatically during daily life, without requiring specific tests (a). In this way
the algorithm is able to self-adapt and learn from its user, without requiring any
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Table 4.1: Distribution of the activities into the six clusters used for activity recog-
nition.

Cluster name Original activities
Lying Lying down resting

Sedentary Sitting resting, sitting stretching, standing stretching,
desk work, reading, writing, working on a PC, watch-
ing TV, sitting fidgeting legs, standing still

Dynamic Stacking groceries, washing dishes, cooking, folding
clothes, cleaning and scrubbing, washing windows,
sweeping, vacuuming

Walking Self-paced, self-paced carrying books, stairs up and
down, treadmill (flat: 3, 4, 5, 6 km/h, 4 km/h carrying
weights, incline: 3, 5km/h, 5, 10%))

Biking Cycle ergometer, low, medium and high resistance
level at 60 and 80 rpm

Running 7, 8, 9, 10 km/h on a treadmill

individual calibration to estimate CRF or EE. Once a normalization factor for an
individual has been automatically determined, it is used to normalize HR (b). The
resulting normalized HR is free of confounding effects due to CRF. As a last step,
the normalized HR is used instead of the HR as a predictor for the activity-specific
EE estimation equations (c), as shown in Fig. 9.2. The new predictor better repre-
sents the relation between HR and EE, since HR is not affected by CRF.

4.5 Methods

We considered ACC and HR data to implement all components of our approach,
including activity recognition, HR normalization factor estimation, and EE esti-
mation. This section details the components further. More details on participants,
sensor device and experimental protocol can be found in Section 4.6.

4.5.1 Activity recognition

We implemented an activity recognition algorithm to classify the following clus-
ters of activities (see Table 4.1): lying, sedentary, dynamic, walking, running and bik-
ing. We selected Support Vector Machines (SVMs) as classifier, and the following
features: mean absolute value of the band-passed signa, variance, standard deviation,
main frequency peak, amplitude of the main frequency peak and high frequency band sig-
nal power. See Sections 6.6.1.2 and 4.5.6 for details on the feature extraction and
selection processes. For the SVM, a polynomial kernel with degree 5 was used
(λ = 10, C = 1). Activity recognition is used for EE estimation (all six clusters),
and as part of the automatic HR normalization system (lying and walking only).
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Table 4.2: Walking Speed Model (R20.94).

Variable Coefficient
Intercept −1.28
Height 0.015

MI 11.37
Var −2.41

IQRX 1.79
IQRY −2.96

HPowX −0.00079
HPowZ −0.00084

FFTpeakXf −0.088

4.5.2 Automatic HR normalization system

We extended the architecture of activity-specific EE estimation algorithms (Fig.
9.2), by including the extra Heart Rate Features Normalization block. The block is
detailed in Fig. 6.3, where all the components necessary to derive the normal-
ization factor automatically, are listed. In order to provide automated and non-
invasive CRF estimation, we estimate the normalization factor using activities of
daily living only, and their associated HR. More specifically, the Heart Rate Features
Normalization block uses the HR while resting and walking at different speeds as
predictors for the HR normalization factor, together with anthropometric charac-
teristics. Thus, in addition to the activity recognition algorithm, the automatic
HR normalization system includes two more components; 1) a walking speed
estimator, 2) and a normalization factor estimator. The next sections covers the
components in detail.

4.5.2.1 Walking speed estimator

The walking speed estimator is a multiple linear regression model (see Table 4.2)
which predicts walking speed using as features the individual’s height and the
following ACC features: main frequency peak on the X axis (FFTpeakXf), mean absolute
value of the band-passed signal (or Motion Intensity, MI), sum of the variance on the three
axis (Var), inter-quartile range on the X and Y axis (IQRX and IQRY) and high frequency
band signal power on the X and Z axis (HPowX and HPowZ).

4.5.2.2 Heart rate normalization factor estimator

A multiple linear regression model (see Table 4.3) is built to predict the normaliza-
tion factor (i.e. an individual’s HR while running at 10 km/h) using activities of
daily living only. The best model (see Section 4.7) relies on HR while lying down
resting and while walking at 4, 5 and 6 km/h, together with the individual height
and age, as independent variables.
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Table 4.3: Heart Rate Normalization Factor Estimation Model (R20.87).

Variable Coefficient
Intercept 66.91
HR at rest 0.29
HR 4km/h 1.58
HR 5 km/h −2.80
HR 6 km/h 2.18

Height −0.17
Age −0.23

4.5.3 HR normalized

Actual HR measurements are finally used after applying the HR normalization
factor, derived with the normalization factor estimator, using the simple ratio:

NormalizedHR = CurrentHR
Normalizationfactor

4.5.4 Personalized activity-specific EE estimation

Following the methodology applied in current state of the art EE estimation al-
gorithm, EE is estimated by first classifying the activity performed, by means of
ACC features, and then applying an activity-specific EE linear regression model.
The activity-specific EE linear models use anthropometric characteristics, ACC
and HR features. Thus, we developed six multiple linear regression models, one
for each cluster of activities (see Table 4.4). Activity-specific ACC features for
each model were selected using linear forward selection, in order to model intra-
individual differences in EE. Normalized HR was used as a feature for the mod-
erate to vigorous clusters (dynamic, walking, running and biking). The final fea-
ture set includes Resting Metabolic Rate (RMR, computed with anthropometric
variables only, according to the Harris-Benedict formula),motion intensity (MI),
standard deviation (STD), median (MED), main frequency peak (FFTpeaxf )
and its amplitude (FFTpeaka), body weight (BW ) and Normalized Heart Rate
(HRNorm).

4.5.5 Feature extraction

ACC and HR features were used to derive activity recognition, walking speed,
CRF (normalization factor) estimation and EE estimation linear models. ACC data
from the three axes were segmented in 4 second windows, band-pass (BP) filtered
between 0.1 and 10Hz, to isolate the dynamic component caused by body motion,
and low-pass (LP) filtered at 1 Hz, to isolate the static component, due to grav-
ity. We selected a time window of 4s, since it is short enough to detect changes
in postures even for short breaks in sedentary time, and long enough to capture
the repetitive patterns of activities, such as walking or running. Time and fre-
quency features were extracted from each window over the three axes of the LP
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Figure 4.3: Components of the automatic HR normalization system used in this
work to derive the normalization factor automatically.

Table 4.4: Activity-specific EE linear models.

Cluster Model
Lying 0.49 + 0.00068 RMR − 29.66MIx +

9.78 STDx+ 0.11MEDx+ 0.68MEDy

Sedentary 0.31 + 0.00061 RMR + 8.42 MIx +
11.12 MIy − 2.37 MIz + 2.9 STDx +
2.48 STDy+ 0.47MEDy− 0.14MEDz +
0.05 FFTpeakY a

Dynamic −3.43 + 5.95 HRNorm + 0.035 BW +
7.65MIy + 8.59MItot+ 4.80 STDx

Walking −9.00 + 15.07 HRNorm + 0.056 BW +
3.91 STDx

Biking −10.58+0.0029RMR+16.75HRNorm−
37.66 MIx + 14.23 MIy − 54.37 V ARy +
26.22 STDx

Running −8.73 + 11.50 HRNorm + 0.12 BW +
13.99 MIy − 5.28 STDy + 4.16 MEDx −
3.70MEDz − 1.33 FFTpeakXf
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and BP signal. Time features included mean, mean of the absolute signal, magnitude,
mean distance between axes, skewness, kurtosis, variance, standard deviation, coefficient
of variation, range, min, max, correlation, inter-quartiles range, median and zero crossing
rate. Frequency features included: spectral energy, entropy, low frequency band signal
power (0.1 - 0.75 Hz), high frequency band signal power (0.75 - 10 Hz), frequency and
amplitude of the FFT coefficients. These features were selected due to high accuracy
showed in past research [5-9]. The mean HR was extracted from R-R intervals,
computed over 15 seconds windows. R-R intervals features were not included in
the activity recognition and walking speed linear models. Feature extraction was
performed in MATLAB (MathWorks, Natick, MA).

4.5.6 Feature selection

4.5.6.1 Activity type recognition

Feature selection was based on correlation, following the assumption that a good
feature set includes features highly correlated with the class, but uncorrelated to
each other. This step, as well as the subsequent classification, was implemented in
Java using libraries provided by theWEKAmachine learning toolkit (University
of Waikato, Hamilton, New Zeland). The final feature set (see Section 6.6.2) was
used to train the SVM.

4.5.6.2 Multiple linear regression models

Feature selection for multiple linear regression models (six activity-specific EE
models, one for each cluster, the walking speed estimator and the HR normal-
ization factor estimator) were based on how much variation in the dependent
variable each feature could explain, using linear forward selection. Participant-
independent models were developed for each multiple linear regression model.
Additionally, anthropometrics characteristics and Resting Metabolic Rate were
added to the EE models depending on the cluster [9] (see Section 6.6.4).

4.5.7 Statistics and performance measure

All analysis were performed independent of the participant. Models were derived
on all the participants but one, and validated on the remaining one. This leave-
one-out procedure was carried out N times (N = number of participants), and
results were averaged. Even though performance was evaluated independent of
the subject, the reported models are derived including data from al participants
(Tables 4.2, 4.3 and 4.4). Performance of the activity recognition was evaluated
using the percentage of correctly classified instances for each cluster. The perfor-
mance measures used for EE is the Root Mean Square Error (RMSE), averaged
within an activity and between participants. Results are reported only in terms of
RMSE because of the large inter-individual variability that is typical for EE esti-
mates. Normalization procedures do exist (e.g. estimating in kcal/kg), but do not
take into account that EE during different activities is affected differently by body
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weight. Performance of the walking speed linear model, as well as the HR nor-
malization factor estimates, were evaluated using the RMSE and the percentage
of the explained variance of the multiple linear regression model (R2). As statisti-
cal analysis, paired t-tests between non-normalized and normalized results were
used. Significance level α was set to 0.05 for all tests.

4.6 Measurement setup and data collection

4.6.1 Participants

Twenty-nine (22 male, 7 female) healthy participants took part in the experiment.
Mean age was 30.9± 5.5 years, mean weight was 72.6± 12.5 kg, mean height was
177± 9.3 cm and mean BMI was 23.0± 2.6 kg/m2. Our internal Ethics Committee
approved the study, and each participant signed an informed consent form.

4.6.2 Instruments

4.6.2.1 ECG Necklace

The ECG Necklace [98] is a low power wireless ECG platform (see Fig. 4.4). The
system relies on an ultra-low-power ASIC for ECG read-out, and it is integrated
in a necklace, providing ease-of-use and comfort while allowing flexibility in lead
positioning and system functionality. It achieves up to 6 days autonomy on a
175mAh Li-ion battery. For the current study, the ECG Necklace was configured
to acquire one lead ECG data at 256 Hz, and ACC data from a three-axial ac-
celerometer (ADXL330) at 32 Hz. The sensor was placed on the chest with an
elastic belt. The x, y, and z axes of the accelerometer were oriented along the ver-
tical, medio-lateral, and antero-posterior directions of the body, respectively. Two
gel electrodes were placed on the participant’s chest, in the lead II configuration.
Data were recorded on the on-board SD card to ensure no data loss. Data were
also streamed in real-time to provide visual feedback of the system functionality
to the experimenter.

4.6.2.2 Indirect calorimeter

Breath-by-breath data were collected using the CosmedK4b2 indirect calorimeter.
The Cosmed K4b2 weights 1.5 kg, battery included, and showed to be a reliable
measure of EE [85]. The system was manually calibrated before each experiment
according to the manufacturer instructions. This process consists of allowing the
system to warm-up, following a double calibration, first with ambient air and then
with calibration gas values. A delay calibration was performed weekly to adjust
for the lag time that occurs between the expiratory flow measurement and the gas
analyzers.
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Figure 4.4: Wearable sensor used for this study (ECG Necklace). The sensor ac-
quires 2-leads ECG and 3-axial acceleration.

4.6.3 Experimental design

Participants were invited for recordings on two separate days. They reported at
the lab at 8.00 a.m., after refraining from drinking (except for water), eating and
smoking in the two hours before the experiment. The protocol included a wide
range of lifestyle and sport activities, including sedentary and household activ-
ities. More specifically, day one consisted of activities selected as representative
of common daily living of many people in industrialized countries [21]. The ac-
tivities were: lying down, resting, sitting stretching, standing stretching, desk work,
reading, writing, working on a PC, watching TV, fidgeting legs, standing still, standing
preparing a salad, washing dishes, stacking groceries, folding clothes, cleaning the table,
washing windows, sweeping, vacuuming, walking self-paced, walking self-paced carrying
books (4.5 kg), climbing stairs up, climbing stairs down. Each sedentary and house-
hold activity was carried out for a period ranging from 4 to 12 minutes, with a 1
or 2 minutes break between the activities. Day two was carried out at the gym,
where subjects performed a series of more vigorous activities, including: walking
at 3,4,5 and 6 km/h on a treadmill, walking at 4 km/h carrying a weight (5% of the sub-
ject’s weight), walk- ing at 3 km/h, 5 and 10% inclination, walking at 5 km/h, 5 and 10%
inclination, cycle ergometer at 60 and 80 rpm, low, medium and high resistance levels,
running at 7,8,9 and 10 km/h. Activities carried out at the gym were 4 minutes du-
ration, except for free weights and running, which lasted for 1 to 2 minutes. Four
participants did not perform all running activities and were excluded from data
analysis.
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4.6.4 Pre-processing

The dataset considered for this work contains about 70 hours of annotated data
collected from 29 subjects, consisting of reference V O2, V CO2, three axial accel-
eration and ECG.

4.6.4.1 ECG Necklace data

Raw ECG and ACC data were downloaded from the SD card of the ECG Necklace.
Raw data were exported into csv files containing time-stamped ECG and accelera-
tion samples. A Continuous Wavelet Transform based beat detection algorithm was
used to extract R-R intervals from ECG data, which output was manually exam-
ined to correct for missed beats that might be caused by motion artifacts [102].

4.6.4.2 Indirect calorimeter data

Breath-by-breath data acquired from the Comsed K4b2 was resampled at 0.5Hz.
EE was calculated from O2 consumption and CO2 production using Weir’s equa-
tion [128]. The first 1 or 2 minutes of each activity were discarded to remove non-
steady-state data.

4.7 Results

4.7.1 Activity recognition

Subject-independent classification accuracy of the SVM used to select which clus-
ter model to use in the EE estimate was 94.3%. More specifically, the accuracy
was 100% for lying, 91% for sedentary, 87% for dynamic, 98% for walking, 91%
for biking and 99% for running.

4.7.2 Walking speed estimator

The walking speed multiple linear regression model could explain 94% of the vari-
ance in walking speed (R2 = 0.94). RMSE of the model is 0.28± 0.09 km/h.

4.7.3 Heart rate normalization factor estimator

The Heart Rate Normalization Factor multiple linear regression model could ex-
plain 87% of the variance (R2 = 0.87). RMSE was 8.3 beats per minute (bpm)
(see Fig. 4.5). Higher error was obtained with a second model, built using lower
walking speeds only, since lower speeds will have higher chance to be detected in
daily life (3 and 4 km/h, together with height and age, RMSE 11.8 bpm). Fig. 4.5
shows an example of the normalization. By considering our normalization factor
approach, the HR variance was clearly reduced. We concluded that the normal-
ized HR can be used as part of the activity-specific EE models, reducing over or
under-estimations.
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Figure 4.5: Scatterplot and residuals plot of measured (running on a treadmill)
VS predicted (from age, height, HR at rest and while walking at 4,5 and 6 km/h)
normalization factors (i.e. HR while running at 10 km/h).
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Figure 4.6: HR normalized for two participants using the approach proposed in
this work. Once CRF is taken into account, absolute HR differences are signifi-
cantly reduced, and Norm-HR can be used to estimate EE, reducing error. HR
before normalization is shown for comparison (as in Fig. 9.1).
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4.7.4 Energy expenditure estimation

RMSE for the EE estimate was 0.60kcal/min. More specifically, RMSE was 0.20kcal/min
for lying, 0.25 kcal/min for sedentary, 0.58 kcal/min for dynamic, 0.81 kcal/min
for walking, 0.92 kcal/min for biking and 0.89 kcal/min for running).

Fig. 4.7 shows the reduction in error for activity-specific EE models using
HR (dynamic, walking, running and biking), when CRF is taken into account.
RMSE was reduced from 0.60 to 0.58 kcal/min for dynamic (3% error reduction,
not significant), from 1.13 to 0.81 kcal/min for walking (28% error reduction,
p = 0.00027 < α), from 1.38 to 0.92 kcal/min for biking (33% error reduction,
p = 0.00037 < α) and from 1.25 to 0.89 kcal/min for running (29% error reduc-
tion, p = 0.01 < α).

4.8 Discussion and conclusions

In this paper we proposed a novel algorithm for activity-specific EE estimation
based on a combination of ACC and HR data. By introducing a HR normaliza-
tion factor, we were able to model the effect of CRF on HR during exercise. By
normalizing HR responses from subjects with different levels of CRF, we could
significantly reduce EE estimation error (p < 0.05 for walking, biking and run-
ning). More specifically, the proposed approach is able to reduce EE estimation
error of activity-specific linear models (i.e. models developed specifically for an
activity, and already including the best ACC features, as well as anthropometric
characteristics) by an additional 28 to 33% compared to the best state-of-the-art
models published up to date. The error reduction applies to non-sedentary clus-
ters of activities, such as walking, biking or running at moderate intensities.

We believe this is a significant step towards personalized health and wellbeing
monitoring. The proposed system uses a single monitoring device and is able to
learn automatically from the user over time, collecting HR data while performing
different activities (walking at different speeds, resting, etc.). The collected data is
then used to determine the HR normalization factor, a coefficient representative
of the CRF level of an individual.

Personalizing a system goes beyond the inclusion of the individual’s anthro-
pometric characteristics in the activity-specific EE linear models. In the future, the
estimated normalization factor could be used as predictor to estimate V O2 max,
using equations published in literature [62]. By doing so, a user would be aware
of one of the most important health markers [81], without the burden and risks of
regularly performing maximal or sub maximal tests.

We expect that our HR normalization approach will be most useful for sports
training devices, where users and trainers are interested in accurate EE estimation
under moderate to vigorous workloads. However, less active users willing to take
up a more active lifestyle, or undergoing a physical activity intervention targeted
in modifying behavior to increase level of activity, would also benefit. As a matter
of fact, in the latter case CRF takes even a bigger role, since it typically changes
faster in the transition from inactive to active lifestyle, while lower changes can
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Figure 4.7: RMSE for the four moderate to vigorous clusters. Statistically signifi-
cant differences are marked with * (paired t-test, p < α, α = 0.05) EE estimation
error was significantly reduced for walking, running and biking. Error variance
is reduced as well.
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be expected for a continuously active lifestyle. Being able to monitor changes in
CRF and HR over time would affect positively EE estimates, since EE estimates
are highly dependent on HR and on the relation between CRF, HR and EE, as
shown by our analysis. New opportunities for applications targeted at inducing
behavioral change analyzing not only levels of PA, but also change in CRF and as-
sociated reduced risk of disease, could be developed building up on the proposed
approach.

We recognize limitations in our study. Even though we developed an algo-
rithm able to derive the HR normalization factor automatically, during regular
activities, by combining rest and walking data with the subjectÕs anthropomet-
ric characteristics, we tested it using laboratory recordings only. We consider that
the evaluation with lab data is a necessary first step, which can be sufficiently cov-
ered with reference measurements of EE. In particular, the approach allowed us to
confirm performances of the individual estimators (activity recognition accuracy
was 94.3%, walking speed RMSE was 0.28 ± 0.09 km/h). Overall, we conclude
that an accurate personalized EE estimation using a single monitoring device and
combining ACC and HR is feasible.



5
Automatic heart rate normalization for

accurate energy expenditure estimation: an
analysis of activities of daily living and

heart rate features

M. Altini, J. Penders, R. Vullers, O. Amft
Adapted from: Methods of Information in Medicine 2014; 53 (5): 382-388.

Abstract

Background: Energy Expenditure (EE) estimation algorithms using Heart Rate (HR) or a
combination of accelerometer and HR data suffer from large error due to inter-person differ-
ences in the relation between HR and EE. We recently introduced a methodology to reduce
inter-person differences by predicting a HR normalization parameter during low intensity
Activities of Daily Living (ADLs). By using the HR normalization, EE estimation per-
formance was improved, but conditions for performing the normalization automatically
in daily life need further analysis. Sedentary lifestyle of many people in western societies
urge for an in-depth analysis of the specific ADLs and HR features used to perform HR
normalization, and their effects on EE estimation accuracy in participants with varying
Physical Activity Levels (PALs). Objectives: To determine 1) which low intensity ADLs
and HR features are necessary to accurately determine HR normalization parameters, 2)
whether HR variability (HRV) during ADLs can improve accuracy of the estimation of
HR normalization parameters, 3) whether HR normalization parameter estimation from
different ADLs and HR features is affected by the participants’ PAL, and 4) what is the
impact of different ADLs and HR features used to predict HR normalization parameters
on EE estimation accuracy. Methods: We collected reference EE from indirect calorimetry,
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accelerometer and HR data using one single sensor placed on the chest from 36 participants
while performing a wide set of activities. We derived HR normalization parameters from
individual ADLs (lying, sedentary, walking at various speeds), as well as combinations
of sedentary and walking activities. HR normalization parameters were used to normal-
ized HR and estimate EE. Results: From our analysis we derive that 1) HR normalization
using resting activities alone does not reduce EE estimation error in participants with
different reported PALs. 2) HRV features did not show any significant improvement in
RMSE. 3) HR normalization parameter estimation was found to be biased in participants
with different PALs when sedentary-only data was used for the estimation. 4) EE estima-
tion error was not reduced when normalization was carried out using sedentary activities
only. However, using data from walking at low speeds improved the results significantly
(30 − 36%). Conclusion: HR normalization parameters able to reduce EE estimation
error can be accurately estimated from low intensity ADLs, such as sedentary activities
and walking at low speeds (3 − 4 km/h), regardless of reported PALs. However, seden-
tary activities alone, even when HRV features are used, are insufficient to estimate HR
normalization parameters accurately.

5.1 Introduction

5.1.1 Scientific background

Early epidemiological research focused on developing single models or branched
equations combining accelerometer and HR data to predict EE [116, 17, 34]. These
approaches are motivated by the relations between body movement and EE as
well as between oxygen intake, HR and EE. The limitation of these methods in-
clude that a single accelerometer worn close to the body center of mass cannot de-
tect low and upper body motion [29], the reduced relevance of HR during seden-
tary behavior and the need for individual calibration [34]. By introducing activity-
specific models, consisting of a two-step process, where first an activity is recog-
nized, and then an EE estimation model is applied, researchers were able to tackle
some of these limitations [116, 17]. The relation between EE and acceleration as
well as HR is peculiar of a specific context (e.g. activity), thus activity-specific
models are able to capture this relation beyond what single regression models or
branched models can do [29, 118, 9]. Even though algorithms including HR con-
sistently provided improvements compared to accelerometers alone [116, 34, 9],
the main limitation of HR - which is the need for individual calibration - requires
a different solution. Decomposing the EE estimation process into activity-specific
sub-problems is not sufficient to take into account the different relation between
HR and EE in different individuals.

During moderate to vigorous PA, differences in HR between persons perform-
ing the same activity are mainly due to cardiorespiratory fitness (CRF). However,
differences in CRF level do not cause different metabolic responses [104]. Never-
theless, CRF-related variance was tackled only by means of individual calibration
[34] and/or by performing intense activities such as running [96]. For many prac-
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tical applications personal calibration is not feasible since it would require every
user to perform a suitable fitness test. We recently introduced a methodology
to automatically normalize HR by estimating a normalization parameter that de-
scribes HR at a certain workload, using low intensity ADLs [13] (see Fig. 9.1). The
methodology is based on the tight relation between CRF and the HR at a certain
workload, which is the basis of sub-maximal CRF tests [62].

5.1.2 Rationale for the study

Practical conditions for performing the normalization automatically in daily life
need further analysis. The sedentary lifestyle of many people in western societies
[76] urge for an in-depth analysis of the specific ADLs required to predict HR
normalization parameters, and their effects on EE estimation accuracy in persons
with varying PALs. Additionally, HR variability (HRV) features from sedentary
activities as well as moderate to intense ones have been shown to be linked to
CRF level and PALs in past research [55, 37]. Even though this link is unclear, and
results are often in disagreement [80, 56, 66], given the close relation between CRF
and HR normalization parameters it is of interest to analyze if HRV features can
predict HR normalization parameters and reduce EE estimation error.

5.1.3 Objectives of the study

This is the first analysis of how low intensity ADLs and HR features can be used
to estimate HR normalization parameters, and their effects on EE estimation ac-
curacy. Our objectives are: 1) To determine which ADLs and HR features are
necessary to accurately determine HR normalization parameters, 2) To determine
whether HRV during ADLs can improve accuracy of the estimation of HR nor-
malization parameters, 3) To determine whether HR normalization parameters
estimation from different ADLs and HR features is affected by the participants’
PAL and 4) To determine what is the impact of different ADLs and HR features
used to predict HR normalization parameters on EE estimation accuracy.

5.2 Methods

5.2.1 Participants

Participants were 36 (27 male, 9 female) self-reported healthy Holst Centre em-
ployees from diverse ethnic background. Mean age was 31.2 ± 5.7 years, mean
weight was 73.3 ± 11.2kg, mean height was 176.6 ± 9.1 cm and mean BMI was
23.4± 2.4 kg/m2. Imec’s IRB approved the study, and each participant signed an
informed consent form.
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Figure 5.1: Overview on the activity-specific EE estimation and extension for au-
tomatic HR normalization using an HR normalization parameter estimated from
ADLs. Accelerometer features are used for activity recognition, walking speed
estimation and EE models. HR in specific activities (1 . . . N , e.g. lying and walk-
ing at a certain speed) is used to estimate the HR normalization parameter. The
HR normalization parameter is then used to normalize HR and predict EE with
higher accuracy.

5.2.2 Study design

Participants reported at the lab after refraining from drinking (except for water),
eating and smoking in the two hours before the experiment. The protocol con-
sisted of common ADLs in industrialized countries [21], as well as intense activi-
ties. Activities were grouped into six clusters to be used for activity classification.
The six clusters were lying (lying down), sedentary (sitting, standing, desk work,
reading, writing, PC work, watching TV), dynamic (stacking groceries, washing
dishes, cooking, folding clothes, sweeping, vacuuming), walking (treadmill flat
at 3, 4, 5, 6 km/h, inclined 3 − 5%, 3 − 5 km/h), biking (low medium and high
resistance level at 60 and 80 rpms), running (treadmill 7, 8, 9 and 10 km/h). Ac-
tivities lasted for a period of at least 4 minutes, with the exception of running (1
to 4 minutes).
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5.2.3 Outcome measures

All analyses were performed independent of the participant (leave one subject out
validation). Accuracy of the HR normalization parameter estimation was evalu-
ated using: 1) Pearson’s correlation between each HR feature and the HR nor-
malization parameter, to determine the predictive power of each single feature
in each ADLs, 2) the error derived from the difference between estimated and
measured normalization parameters, to determine possible bias and precision of
the estimate. As the measured normalization parameter we used the actual HR
while running on a treadmill. 3) The Root Mean Square Error (RMSE) between
estimated and measured normalization parameters, to determine the accuracy
of the estimate. Additionally, participants were split in active (ACT) and inac-
tive (INA) groups, based on reported PALs in order to determine possible PAL-
induced bias in the estimation procedure. The performance measure used for EE
was the RMSE, averaged within an activity and between participants. A one-way
repeated-measures within-subjects ANOVA with five levels was used to compare
RMSE between EE models. The Tukey test was used as a post hoc test to perform
pairwise comparisons and identify significant differences. In addition, unpaired
t-tests were used to compare INA and ACT groups. Significance was assessed at
α < 0.05 for all analyses.

5.2.4 Methods for data acquisition and measurement

5.2.4.1 ECG Necklace

The ECG Necklace [8] is a low power wireless ECG platform which was config-
ured to acquire one lead ECG data at 256 Hz, and accelerometer data from a three-
axial accelerometer at 32 Hz (see Fig. 9.2). The sensor was placed on the chest
with an elastic belt. Two gel electrodes were placed on the participant’s chest,
in the lead II configuration. A Continuous Wavelet Transform based beat detection
algorithm was used to extract R-R intervals from ECG data, which output was
manually examined to correct for missed beats that might be caused by motion
artifacts [102].

5.2.4.2 Indirect Calorimeter

Breath-by-breath data were collected using the Cosmed K4b2 indirect calorimeter.
The Cosmed K4b2 weights 1.5 kg including battery and showed to be a reliable
measure of EE [85].

5.2.5 Methods for data analysis

Accelerometer and HR features were used to derive activity recognition models,
walking speed, HR normalization parameter estimation models and EE estima-
tion linear models (see Fig. 9.1). To estimate walking speed, we deployed multi-
ple regression models using accelerometer-only features as predictors according
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Figure 5.2: ECG Necklace. The device was used to acquire ECG and accelerometer
data.

to [10, 63]. Details on the accelerometer features and on the implementation of the
models have been widely covered elsewhere [9, 10]. Here, we will focus on the HR
features and ADLs used for the estimation of the HR normalization parameter.

5.2.5.1 HR Features

HR features were extracted from R-R intervals, computed over 2 minutes windows
to ensure sufficient frequency resolution in the Low Frequency band [23]. Time
domain features included mean HR (meanHR), standard deviation of beat-to-beat
intervals (SDNN), square root of the mean squared difference of successive R-Rs
(rMSSD) and number of pairs of successive R-Rs that differ by more than 50 ms
(pNN50). Frequency domain features included low (LF, 0.04-0.15 Hz) and high
frequency power (HF, 0.15-0.40 Hz).

5.2.5.2 Automatic HR Normalization Factor Estimation from ADLs

Multiple linear regression models were built to analyze individual ADLs that can
be recognized with high recognition rates (e.g. lying 100%, sedentary 91% and
walking 98%, together with walking speed - RMSE 0.28±0.09 km/h [10]), as well
as combinations of such ADLs. For each ADL we built a multiple linear regression
model using as predictors HR and/or HRV features during such ADL, and as
dependent variable the HR normalization factor. As HR normalization factor we
selected running at 9 km/h, since no performance improvement in EE estimation
accuracy was shown in our dataset when using the HR at more intense workloads.
The activities and combinations of activities selected were the following:

• Lying: lying down resting

• Sed: sedentary activities

• Walk 3-4-5-6: walking at 3-4-5 or 6 km/h

• Comb A: Lying, Sed, Walk3 and Walk4

• Comb B: Lying, Sed, Walk3, Walk4, Walk5 and Walk6
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To analyze the impact of HRV features, two multiple regression models were
built for each activity and combination, one including HR only, and one including
HR and HRV features.

5.2.5.3 EE Estimation

EE was estimated by first classifying the activity performed using accelerometer
features and then applying an activity-specific EE linear regression model. The
activity-specific EE linear models use anthropometric characteristics, accelerom-
eter and HR features. Thus, we developed six multiple linear regression models,
one for each cluster. Normalized HRs (i.e. HR divided by the estimated HR nor-
malization parameter) obtained from different sets of ADLs were used as predic-
tors in the multiple regression models for moderate to vigorous clusters (dynamic,
walking, running and biking).

5.3 Results

5.3.1 Automatic HR Normalization Factor Estimation from ADLs

Mean HR showed significant correlation with the HR normalization factor during
all ADLs (lying 0.50, sed 0.50, walk3 km/h 0.86, walk4 km/h 0.86, walk5 km/h
0.88 and walk6 km/h 0.90, p < α). No HRV feature was found significantly cor-
related to the HR normalization factor, in any ADL analyzed (p > α for each HRV
feature in each ADL). Additionally, no HRV feature was able to discriminate be-
tween participants groups divided by PALs (INA vs ACT), in any activity except
for low speed walking (p < α for SDNN, pNN50, LF and HF during walk3). Mean
HR could discriminate between INA and ACT in all activities (p < α).

Fig 6.3.a-c shows the density plot of the difference between estimated and mea-
sured HR normalization factors. The spread of the distribution reduced by 47%
from lying to walk6. Fig 6.3.d-i show the difference distribution for models where
HR or HR+HRV features were predictors, for single ADLs. No significant dif-
ference was found when including HRV features in any activity. RMSE was 17.6
bpm for lying data, 17.6 for sed, 10.5 for walk3, 10.3 for walk4, 10.4 for walk5,
9.4 for walk6, 11.8 for CombA and 9.0 for CombB. No differences in RMSE were
found when HR and HRV features were combined (p > α for all activities). Fig
6.3.j shows the HR normalization factor estimation error when different ADLs are
used as predictors, divided per PAL of the participants. When only resting data
is used (e.g. lying), the HR normalization factor is overestimated for ACT partic-
ipants, while it is underestimated for INA ones. No difference in the estimation
accuracy between ACT and INA participants was found when walking data was
included in the models as well (CombA and CombB), with higher walking speeds
(CombB) showing higher precision (spread further reduced by 24%).



82
Chapter 5. Automatic heart rate normalization for accurate energy expenditure

estimation: an analysis of activities of daily living and heart rate features

Figure 5.3: Difference between HR normalization parameter measured in the lab
while the participants were running at 9 km/h and estimated HR normalization
parameter as predicted from a) HR features only and b) HRV features, during
a,b,d-i) single ADLs and c) combinations of ADLs. j) Prediction error divided by
PAL.

5.3.2 EE Estimation

Fig. 8.2 shows the results of the HR normalization on EE estimation. The results
of three different normalizations (from lying data only and using combined lying
and walking speed data, CombA and CombB), is compared to the cases of no nor-
malization (No Norm) and normalization using the measured HR normalization
factor (Opt Norm). RMSE is reduced between 14 and 17% for dynamic activities,
between 10 and 37% for walking activities, between 6 and 38% for biking activities
and between 6 and 42% for running activities. No significant error reduction was
shown when the HR normalization factor estimated using lying data only was
used (6 to 17%, p > α). Error reduction when walking data was included was
significant for walking activities (36-37%, p < α), biking activities (30-38%, p < α)
and running activities (31-40%, p < α), but not for dynamic activities (14-15%,
p > α). CombA and CombB could reduce RMSE at the same extent the optimal
HR normalization could (difference between ComA, CombB and Opt Norm was
not statistically significant, p > α).
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Figure 5.4: Algorithm performance in terms of RMSE of EE estimations during
different moderate to vigorous activity clusters (a to d show dynamic activities,
e.g. household, and walking, biking and running activities) where HR is not
normalized (No Norm), normalized using lying data only, and normalized using
ADLs included in CombA and ComB. Normalization performed using the mea-
sured HR normalization parameter (Opt Norm) is also shown for comparison.
The first column of each subplot shows performance of state of the art activity-
specific EE models combining accelerometer and heart rate features, but without
HR normalization.

5.4 Discussion

5.4.1 Answers to study questions

We report the main findings of our analysis, in relation to the four objectives of
this study. 1) To determine which ADLs and HR features are necessary to accu-
rately determine HR normalization parameters: from our analysis we derive that
resting activities alone are not sufficient to estimate HR normalization parameter,
even if there is positive correlation between HR at rest and the HR normalization
parameter. Thus, resting activities alone are unable to reduce EE estimation er-
ror in participants with different reported PALs. However, results obtained using
data at rest and while walking at low speeds (e.g. < 4 km/h), showed results
comparable to the ones obtained when including data while walking at higher
speeds. Hence, ADL and HR features support estimating the HR normalization
parameter in typical mixed lifestyle. 2) To determine whether HRV during ADLs
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can improve accuracy of the estimation of HR normalization parameters: from
our analysis HRV features were unable to provide additional information and
therefore improve the estimate accuracy of the HR normalization parameter (see
Fig. 6.3.d-i). We attribute this finding to a weaker inter-personal relation between
HRV and CRF. 3) Whether HR normalization parameter estimation from different
ADLs and HR features is affected by the participants’ PAL: our analysis showed
that the normalization procedure works equally well in participants with differ-
ent PALs, provided that walking data is included in the HR normalization pa-
rameter multiple linear regression models (see Fig. 6.3.j). Estimating precision is
improved when data while walking at higher speeds is included in the HR nor-
malization parameter multiple linear regression models (see Fig 6.3.a-c). 4) To de-
termine what is the impact of different ADLs and HR features used to predict HR
normalization parameters on EE estimation accuracy: our analysis showed that
EE estimation accuracy when the HR normalization parameter is estimated from
ADLs including walking (CombA and CombB) reaches the same accuracy of the
optimal normalization that could be performed measuring the HR normalization
parameter during a treadmill test (see Fig. 8.2).

5.4.2 Strength and weaknesses of the study

To the best of our knowledge, this is the first time that HR and HRV features are in-
vestigated during ADLs as predictors of a HR normalization parameter, together
with the impact of such normalization procedure on EE estimation accuracy and
participants with different PALs. Using the proposed personalization approach,
it is possible to significantly reduce EE estimation error by automatically normal-
izing HR using low intensity ADLs, such as sedentary activities and walking at
low speeds. However, we recognize limitations in our study. Even though we de-
veloped algorithms able to derive the HR normalization parameter automatically
during ADLs, we tested it using laboratory recordings only. We consider that eval-
uation with lab data is a necessary first step. In particular, the approach allowed
us to establish the accuracy of EE estimation models derived with ADLs and HR
features. Further investigations should explore the relation between specific con-
texts and physiological parameters beyond linear models. The analysis should
also be extended to a wider population consisting of participants with varying
cardiorespiratory fitness level.

5.4.3 Results in relation to other studies

Previous work by our group [10] as well as others [118, 96] showed that normaliz-
ing the HR using a normalization parameter representative of CRF, such as the HR
at a certain workload, can significantly reduce inter-person differences and con-
sequently improve EE estimation accuracy. However, to determine the HR nor-
malization parameter for an individual, required personal calibration (e.g. per-
forming a treadmill test), which is not practical. Moreover, the calibration would
need to be repeated frequently. In this study we investigated the possibility to de-
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termine the HR normalization parameter from different combinations of ADLs,
including rest only activities (e.g. lying or sedentary). Additionally, we analyzed
HRV features during ADLs, in the context of EE estimation.

Given the tight relation between CRF and the HR normalization parameter,
which is the basis of sub-maximal CRF tests [62], it is of interest to review previous
research on the relation between HRV and CRF. Many studies investigated the
relation between HR and CRF during cross-sectional studies [80, 56, 66], as well as
interventions [83, 32], and showed reductions in HR due to higher CRF levels, but
no changes in HRV. Our results are in agreement with those, where HRV features
could explain very little of the differences in fitness level, and mean HR was the
best predictor of such differences. Since differences in HR and HRV features at
rest are mainly driven by age, while feature differences during exercise are mainly
driven by fitness [121], we investigated HRV during low intensity ADLs as well.
However, we could not find a relation between HRV features while walking and
the HR normalization parameter. Other authors did report a significant increase
in HRV features and CRF following a physical activity intervention [87], however
it is not clear if HRV features could be used as predictors of CRF.

5.5 Conclusions

We analyzed the impact of HR and HRV features in different ADLs as predictors
of a HR normalization parameter necessary in order to reduce inter-person dif-
ferences in HR and improve EE estimation accuracy. Using HR and HRV features
during ADLs as predictors, we aimed at providing a normalization procedure
able to automatically normalize HR without requiring any specific test. Overall,
we conclude that an accurate personalized EE estimation is feasible, even when
only data at rest and from walking at low speeds is available, as frequently occur-
ring in today’s lifestyle.
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Abstract

In this paper we propose a generic approach to reduce inter-individual variability of dif-
ferent physiological signals (HR, GSR and respiration) by automatically estimating nor-
malization parameters (e.g. baseline and range). The proposed normalization procedure
does not require a dedicated personal calibration during system setup. On the other hand,
normalization parameters are estimated at system runtime from sedentary and low inten-
sity Activities of Daily Living (ADLs), such as lying and walking. When combined with
activity-specific EE models, our normalization procedure improved EE estimation by 15
to 33% in a study group of 18 participants, compared to state of the art activity-specific
EE models combining accelerometer and non-normalized physiological signals.

6.1 Introduction

The inclusion of physiological signals such as HR, Galvanic Skin Response (GSR),
respiration, skin temperature or humidity, in combination with accelerometers,
consistently provided better EE estimation results than accelerometers alone [9,
34, 129, 114]. However, inter-individual differences in physiology, as well as the
consequent need for individual calibration, limit accuracy and practical applica-
bility of such systems [11, 34, 43]. Breaking down the EE estimation process into
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activity-specific sub-problems is not sufficient to take into account the different
relation between physiological signals and EE in different individuals. A method
is needed to automatically normalize physiological signals without requiring in-
dividual calibration and fully exploit the relation between such signals and EE.

In this paper, we introduce a generic method to personalize EE estimates, by
normalizing physiological signals from Activities of Daily Living (ADLs). Our
contribution is two-fold:

1. We introduce a method able to normalize multiple physiological signals
(HR, GSR and respiration) by automatically estimating normalization param-
eters (i.e. baseline and range). The proposed methodology uses low intensity
ADLs, such as lying down and walking and is independent of the underlying
physiological process driving inter-individual differences.

2. We evaluate the benefit of the proposed normalization methodology for
activity-specific EE estimation. We implemented activity-specific models
combining accelerometer and physiological data from two wearable sen-
sors, located at the chest and wrist. In a study group of 18 participants, we
show error reductions between 15% and 33% when normalized physiologi-
cal signals are used, compared to state of the art activity-specific EE models
without normalized physiological signals.

6.2 Related work

6.2.1 EE estimation in epidemiological research

Typically, accelerometer based methods use activity counts, a unit-less measure
representative of whole body motion, as independent variable in the regression
model developed to predict EE [52]. The main shortcoming is that a single model
does not fit all the activities, since the slope and intercept of the regression model
changes according to the activity performed. EE estimation based on HR suffers
from different problems. First, HR based estimations are inaccurate during seden-
tary behavior, given that HR is also affected by non-activity related factors, such
as stress and emotions. Secondly, HR based models need individual calibration
to perform accurately [34]. The highly correlated relation between HR and EE
within one individual changes substantially between individuals [10].

6.2.2 Machine learning methods for EE estimation

The latest algorithms for EE estimation use machine learning techniques. Some
authors applied machine learning methods to directly estimate EE from accelerom-
eter features, using for example neural networks [60, 103]. However these ap-
proaches suffer from the same limitations of the activity counts-based approaches,
being unable to capture the peculiarities of the relation between accelerometers
features and EE during different activities [29, 105]. Others extended the single
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model approach, performing activity recognition over a pre-defined set of activ-
ities, and then applying different methods to predict EE [9, 29, 118, 107]. These
models are typically called activity-specific. Additionally, some hybrid approaches
have been developed. Unsupervised clustering was used to avoid time consuming
activity labeling during data collection, still dividing the EE estimation problem
into sub-problems [45]. However, this approach also showed sub-optimal perfor-
mance compared to activity-specific models.

Given the substantial amount of work using activity-specific models and the
consistent improvements obtained compared to other methods, as reported by [9,
29, 105], we believe that activity-specific models are presently the best methodol-
ogy to follow when developing EE estimation algorithms. However, inter-individual
differences in physiology, as well as the resulting need for individual calibration,
limit the accuracy and practical applicability of EE models using physiological
signals [11, 34]. Partitioning the EE estimation into activity-specific sub-problems
is not sufficient to address the relation between physiological signals and EE in
different individuals.

6.2.3 Normalization of physiological signals

During moderate to vigorous PA, differences in physiological signals between in-
dividuals performing the same activities can be due to a variety of factors. While
cardiorespiratory fitness (CRF) is the main factor driving changes in HR during
physical exercise [121], differences in respiration, skin temperature or GSR might
be caused by different underlying processes or characteristics of the person [109].
We recently investigated the relation between multiple physiological signals (HR,
respiration rate, GSR and skin humidity) and EE for activity-specific EE estimation
models [11]. Physiological signals showed higher correlation with EE compared
to accelerometer data. However, subject-independent models including physio-
logical signals performed sub-optimally, confirming the need for individual cali-
bration. Individual calibration limits practical applicability, since the individual
relation between a physiological signal and EE needs to be determined for the
algorithm to be accurate. To the best of our knowledge, the only attempt to au-
tomatically normalize physiological signals without requiring individual calibra-
tion was reported by our group. In [10], we normalized HR from Activities of
Daily Living (ADLs) exploiting the known relation between HR, CRF and EE.

In this work, we propose a generic methodology to automatically normalize
different physiological signals at runtime, independently from the causes driving
inter-individual differences in such signals. The proposed normalization method-
ology uses low intensity ADLs to avoid individual calibration in laboratory or
supervised settings.
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6.3 Relation between EE, accelerometer and physiological
data

In this section, we introduce the problem of inter-individual differences in phys-
iological signals when estimating EE. Figure 9.1.a shows the correlation between
different signals and EE. Even though physiological signals show higher corre-
lation with EE compared to accelerometer data, subject-independent models in-
cluding physiological signals perform sub-optimally, confirming the need for in-
dividual calibration (see figure 9.1.b). Figure 9.1.b shows the larger individual
errors obtained when using physiological signals in subject-independent mod-
els, compared to accelerometer only models (A-C and A-W). HR-based estimates
still report the lowest error, but with the highest variability. When comparing
subject-independent and subject dependent models, little difference is found for
accelerometer-based models (3-4%), while physiological signals-based models showed
error increase up to 50% (see figure 9.1.c). Figure 9.2 highlights the inter-individual
differences peculiar of physiological signals, for the cases of HR and GSR. For two
subjects with similar body size, EE and accelerometer data is similar during differ-
ent activities, however large inter-individual differences in physiology (both GSR
and HR) can be seen. Clearly, if these signals are used to estimate EE, underesti-
mations and overestimations will occur.

6.4 Methodology overview

Our approach is to estimate normalization parameters of physiological variables
during ADLs, and use normalized physiological variables for activity-specific EE
estimation. When determining the signal range, we are interested in estimating
the physiological signal value at rest (Xphybase

), as well as the value that an indi-
vidual would reach when performing a high intensity activity (Xphyhigh

).
We hypothesize that the physiological signal value during a high intensity ac-

tivity (Xphyhigh
) can be estimated from ADLs, such as resting and walking, thus

without requiring any specific calibration test. Figure 6.3 shows a block diagram
of the normalization methodology and its three main logical blocks: a) the recog-
nition of type and intensity of ADLs, such as lying, walking and walking speed, b) the
estimation of normalization parameters using ADLs and c) the normalization of physio-
logical signals.

As in standard activity-specific models, we divided the EE estimation process
into activity recognition and activity-specific regression models. Physiological
signals are normalized using the estimated normalization parameters (i.e. baseline
and range), before being used in the activity-specific models. Assuming n clusters
of activities ci:

C = {c1, . . . , cn},∀ci ∈ C, ∃ yacti = Xactiβacti + ε (6.1)

yacti is the vector of actual EE values for a specific cluster of activities, βacti
is the vector of regression coefficients, and Xacti is the vector of m input features.
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Figure 6.1: Reference EE, accelerometer and physiological data during a series
of physical activities for two subjects with similar body size. While EE and ac-
celerometer data show similar results and low inter-individual variability, big dif-
ferences are found in both GSR and HR, highlighting the need for normalization
of these parameters before their use for EE estimation.
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Figure 6.2: a) Correlation between accelerometer and physiological data with EE,
b) Root Mean Square Error of subject independent EE models developed using ac-
celerometer or physiological data, c) performance accuracy reduction when mov-
ing from subject dependent to subject independent models. A-C is accelerometer
data at the chest, A-W is accelerometer data at the wrist, HR is heart rate, GSR is
galvanic skin response, Resp is respiration.
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Features can be grouped into accelerometer features (Xacci ), anthropometric char-
acteristics (Xant) and normalized physiological signals (Xphyn ).

The normalized physiological signals (Xphyn , block c in figure 6.3) are de-
rived using the normalization parameters (i.e. the baseline - Xphybase

- and range -
Xphyrange - of a certain signal for a specific individual), according to the following
equation:

Xphyn = (Xphy −Xphybase
)/Xphyrange

(6.2)

WhereXphy are the non-normalized physiological signals. Xphybase
andXphyrange

are determined automatically from ADLs. More specifically, Xphybase
is the value

of the physiological signalXphy when the user is lying down resting, whileXphyrange

is:

Xphyrange = Xphyhigh
−Xphybase

(6.3)

Xphyhigh
is the estimated physiological value for a particular user during a high

intensity activity (e.g. running at 8 km/h). Instead of using a high intensity activity
or calibration test, we estimateXphyhigh

using a multiple linear regression model.
The regression maps physiological signals during various ADLs (XADL) to the
physiological signals value during a high intensity activity (Xphyhigh

, see figure 6.3,
blocks a,b):

Xphyhigh
= XADLβADL + ε (6.4)

where XADL is the vector of physiological signals values in pre-defined ADLs,
such as lying down resting and walking at certain speeds (e.g. 4 to 6 km/h), while
β is the vector of regression coefficients.

6.5 Measurement setup and data collection

6.5.1 Participants

Eighteen (14 male, 4 female) healthy adults took part in the experiment. Mean age
was 32.1±5.8years, mean weight was 73.6±9.4kg, mean height was 176.3±9.5cm
and mean BMI was 23.62±1.66kg/m2. Imec’s internal Ethics Committee approved
the study. Each participant signed an informed consent form.

6.5.2 Instruments

Two wearable sensors were used for data collection, imec’s ECG Neckalce and
Wristband (see figure 6.4). The ECG Necklace was configured to acquire one lead
ECG data at 256 Hz, and accelerometer data at 32 Hz. Two gel electrodes were
placed on the participant′s chest. Imec’s Wristband was configured to acquire
phasic and tonic GSR data at 128Hz and accelerometer data at 32Hz. A Continuous
Wavelet Transform based beat detection algorithm was used to extract R-R intervals
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Figure 6.3: Overview of our method to normalize physiological signals and esti-
mate EE. Normalized physiological signals are used for activity recognition and
EE estimation models. a) components required for the recognition of type and
intensity of ADLs, b) components for the estimation of normalization parameters
and c) equation used to normalize physiological signals.

Figure 6.4: The two wearable sensors used in this experiment, ECG Necklace (left)
and Wristband (right).
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from ECG data, which output was manually examined to correct for missed beats
that might be caused by motion artifacts [102]. Additionally, reference EE was
collected using the Cosmed K4b2 indirect calorimeter [85].

6.5.3 Experimental design

Participants were invited for recordings and reported to the lab after refraining
from drinking (except for water), eating and smoking in the two hours before the
experiment. The first part of the protocol consisted of activities selected as rep-
resentative of common daily leaving of many people in industrialized countries
[21]. The activities were: lying down, resting, desk work, writing, working on a PC,
standing still, washing dishes, stacking groceries, cleaning the table, vacuuming, walking
self-paced, climbing stairs up, climbing stairs down. Each sedentary and household
activity was carried out for a period ranging from 4 to 12 minutes. The second
part of the protocol was carried out at the gym, where participants performed a
series of more vigorous activities, including: walking at 3,4,5 and 6 km/h on a tread-
mill, walking at 3 km/h, 10% inclination, cycle ergometer at 60 and 80 rpm, low, medium
and high resistance levels, running at 7,8,9 and 10 km/h. Activities carried out at the
gym were 4 minutes duration, except for running, which lasted between 1 and 4
minutes.

6.5.4 Statistics and performance measures

All analysis were performed independent of the participant (leave one subject out
cross-validation). Performance of the activity recognition was evaluated using the
percentage of correctly classified instances for each cluster. The performance mea-
sure used for EE were the Root Mean Square Error (RMSE), as commonly used to
report EE estimation errors, and the Mean Absolute Percentage Error (MAPE),
which provides an indication of the error in relation to the EE required by the
performed activity. Performance of the normalization parameters estimation and
walking speed estimation models were evaluated using the RMSE and the per-
centage of the explained variance of the multiple linear regression model (R2).
As statistical analysis, paired t-tests between non-normalized and normalized re-
sults were used. Significance level α was set to 0.05. To allow for comparisons
between methodologies and sensor locations, we implemented six configurations
(three for the Necklace and three for the Wristband): 1) accelerometer data only,
2) combined accelerometer and non-normalized physiological data, 3) combined
accelerometer and normalized physiological data. To evaluate the accuracy of
the normalization parameters estimation against the ideal case of individual cal-
ibration, single regression models were built using as predictors the physiologi-
cal signals only (HR, GSR level and respiration rate), and EE as dependent vari-
able. Two models were implemented for each signal. One model included physi-
ological signals normalized using the actual Xphyhigh

, determined while subjects
were running on a treadmill (individual calibration). The second model included
physiological signals normalized using the estimated normalization parameters.
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Table 6.1: Distribution of the activities into the six clusters used for activity recog-
nition.

Cluster name Original activities
Lying Lying down resting
Sedentary Sitting resting, desk work, writing, work-

ing on a PC, standing still
HWBM/Dynamic Stacking groceries, washing dishes,

cleaning and scrubbing, vacuuming
Walking Treadmill (flat: 3, 4, 5, 6 km/h, incline:

3km/h 10%, self-paced, stairs up and
down)

Biking Cycle ergometer, low, medium and high
resistance level at 80 rpm

Running 7, 8, 9, 10 km/h on a treadmill

These models were also compared against single regression models using non-
normalized physiological signals as dependent variables, to evaluate the impact
of the normalization procedure.

6.6 Methods implementation

6.6.1 Pre-processing

The dataset acquired in this work consists of reference V O2, V CO2, three axial
acceleration from chest (A-C) and wrist (A-W), ECG, respiration rate and GSR. EE
was calculated from O2 and CO2 (Weir 1949). Two subjects were unable to per-
form all activities, while data from one subject had to be discarded due to sensor
failure.

6.6.1.1 Activity type clusters.

We manually grouped the activities into six clusters related to the activity type and
involved motion patterns (see table 1). We included lying and sedentary as inac-
tive clusters. Additionally, we included four active clusters, one representative of
household activities and dynamic transitions between activities, namely the high
whole body motion cluster (HWBM or Dynamic) and three related to locomotion and
active transportation, namely walking, biking and running. The HWBM cluster is
useful in distinguishing sedentary behavior and non-sedentary daily life activities
even when only one sensor is used [9, 29].
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6.6.1.2 Feature extraction and selection.

Accelerometer data from both sensors were segmented in 4 second windows,
band-pass filtered between 0.1 and 10 Hz, to isolate the dynamic component,
and low-pass filtered at 1 Hz, to isolate the static component. The feature set
includes; mean of the absolute band-passed signal, magnitude and inter-quartile range,
median, variance and standard deviation and main frequency peak and amplitude of the
main frequency peak. Feature selection for activity type recognition was based on
mutual information [22], while feature selection for activity-specific EE models
was automated using linear forward selection. Anthropometrics features were
added depending on the activity cluster, following the methodology of [9]. Fea-
tures derived from physiological signals were used for both activity recognition
and EE models. The most discriminative features were selected based on correla-
tion. Selected features were; mean HR, mean skin conductance level and respiration
rate. Features were extracted over 15 seconds windows.

6.6.2 Activity recognition

Given the positive results in past research on activity recognition, we selected Sup-
port Vector Machines (SVMs) as classifiers. For the SVMs, we used a polynomial
kernel with degree 5 (λ = 10, C = 1). Activity recognition was used for EE esti-
mation, and as part of the automatic physiological signals normalization system.

6.6.3 Automatic physiological signals normalization using ADLs

Two normalization parameters are required to perform the physiological signals nor-
malization, baseline and range. While the baseline is determined as the physiologi-
cal signals value while lying, a multiple linear regression model is built to predict
the physiological signals values while performing a high intensity activity (Xphyhigh

i.e. an individual’s physiological signal while running at 8 km/h) from physiologi-
cal signals values whilewalking. We selected lying and walking as the ADLs to use
given the low intensity and high accessibility of such activities. We chose the range
between 4 and 6 km/h for walking speeds, since speeds close to this range were of-
ten reported as the average walking speeds in healthy individuals (5.3 km/h in
[36] and 5 ± 0.8 km/h in [89]). The walking speed estimator is a multiple linear
regression model using as predictors the individual’s height and the following ac-
celerometer features: main frequency peak on the X axis, mean absolute value of the
band-passed signal, sum of the variance on the three axis, inter-quartile range on the X
and Y axis and high frequency band signal power on the X and Z axis.

The vector XADL in equation 4, was implemented as:

XADL = [XphyLying, XphyWalking4, XphyWalking5, XphyWalking6] (6.5)

Where XphyLying and XphyWalkingN are the means of the physiological signals
values while lying and walking at N km/h, for a certain user. N = 4, 5, 6. Actual
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physiological signal values are finally normalized according to equation 2 in sec-
tion 6.4, removing the baseline and dividing by the estimated range.

6.6.4 Personalized activity-specific EE estimation

Following the methodology applied in current state of the art EE estimation algo-
rithm, EE is estimated by first classifying the activity performed and then apply-
ing an activity-specific EE linear regression model. The activity-specific EE linear
models use anthropometric characteristics, accelerometer and physiological sig-
nals features.

Figure 6.5: Scatterplot and residuals per study participant of measured (running
on a treadmill) vs. predicted (from physiological signals during ADLs) physio-
logical signals values during a high intensity activity (Xphyhigh

). Xphyhigh
is used

together with Xphybase
to determine the range and normalize the signals.
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6.7 Results

6.7.1 Automatic physiological signals normalization using ADLs

Activity recognition accuracy for the ADLs used by the normalization methodol-
ogy was 100% for lying and 98% for walking. The walking speed multiple linear
regression model could explain 94% of the variance in walking speed (R2 = 0.94).
RMSE of the model was 028± 0.09 km/h. Both models were previously reported
in [10]. The multiple linear regression models used to estimate Xphyhigh

could
explain 90% of the variance for HR, 88% of the variance for GSR and 72% of the
variance for respiration rate (R2). RMSE was 9.3 beats per minute for HR, 2.4
µS for GSR and 4.8 breaths per minute for respiration rate. Figure 6.5 shows the
relation between the measured and estimated Xphyhigh

. RMSE for single EE es-
timation models using physiological data only was 1.91 kcal/min for HR, 2.29
kcal/min for GSR and 2.49 kcal/min for respiration. RMSE for single EE estima-
tion models using estimated normalization parameters was 1.18 kcal/min for HR,
1.96 kcal/min for GSR and 2.14 kcal/min for respiration. No difference was found
when comparing the models to single EE estimation models using measured nor-
malization parameters (i.e. performing individual calibration) - p = 0.89 > α for
HR, p = 0.08 > α for GSR and p = 0.68 > α for respiration rate. EE estima-
tion error was reduced by 60%, 25% and 18% for HR, GSR and respiration rate
respectively, when compared to non-normalized models.

6.7.2 Personalized activity-specific EE estimation

6.7.2.1 Activity cluster classification

Subject independent classification accuracy of activity type for the ECG Necklace
using accelerometer features only was 93%. Performance was improved by 1%
when physiological signals were included in the model, and by 3% when normal-
ized physiological signals were included (p = 0.08 > α, not significant). Accuracy
for the Wristband was 76%. Accuracy increased by 4% when physiological signals
were included in the model, and by 6% when normalized physiological signals
were included (p = 0.04 < α).

6.7.2.2 Activity-specific EE estimation.

RMSE for the ECG Necklace EE estimation models - average of the six clusters -
was 1.26 kcal/min when accelerometer-only data was used, 1.11 kcal/min when
combining accelerometer and physiological data, and 0.83 kcal/min when com-
bining accelerometer and normalized physiological data (p = 0.02 < α). RMSE
for the Wristband EE estimation models - average of the six clusters - was 2.47
kcal/min when accelerometer-only data was used, 1.42 kcal/min when combin-
ing accelerometer and physiological data, and 1.23 kcal/min when combining
accelerometer and normalized physiological data (p = 0.01 < α). Normalized
physiological signals could reduced EE RMSE by 33% for the ECG Necklace and
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Figure 6.6: Misclassification of the activity recognition models per cluster of ac-
tivities. *indicate accelerometer-only models, Λ indicate models combining ac-
celerometer and physiological data, ’ indicate models combining accelerometer
and normalized physiological data.

by 15% for the Wristband. Misclassification effect (i.e. increased RMSE due to the
application of the wrong EE model) when no physiological signals were used was
20% for the ECG Necklace and 125% for the Wristband (due to the high confusion
between active and inactive clusters). Including physiological signals reduced the
misclassification effect to 10% for the ECG Necklace and 29% for the Wristband.
Normalized physiological signals could further reduce the misclassification effect,
which was 4% for the ECG Necklace and 19% for the Wristband. Details for each
model and activity are listed in table 6.2.

6.8 Discussion

In this paper we introduced a method to normalize multiple physiological sig-
nals (HR, GSR and respiration) by automatically estimating normalization param-
eters. The proposed method uses low intensity ADLs such as lying down resting
and walking at different speeds to estimate the normalization parameters, and it is in-
dependent of the underlying physiological process driving inter-individual dif-
ferences. To validate our methodology, we implemented activity-specific models
combining accelerometer and physiological data from two wearable sensors, lo-
cated at the chest and wrist. We evaluated the impact of the proposed normaliza-
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Figure 6.7: RMSE of activity-specific EE estimation models for the ECG
Necklace and Wristband sensors, including misclassification effects. *indicate
accelerometer-only models, Λ indicate models combining accelerometer and
physiological data, ’ indicate models combining accelerometer and normalized
physiological data.

tion methodology for activity-specific EE estimation, analyzed on the same sub-
jects and activities.

To the best of our knowledge, this is the first work which aims at defining a
generic method able to automatically normalize physiological signals. By apply-
ing the proposed normalization method, we could significantly reduce estimation
errors for activity recognition and EE estimation. Other advantages that emerge
from our normalization method: by normalizing physiological signals from data
acquired during ADLs over a recent period of time (e.g. 2 weeks), the system
could adapt to changes in physiological or environmental factors. Changes in
physiology (e.g. CRF) would for example affect HR, while changes in environ-
mental factor (e.g. temperature) would affect GSR, requiring a new individual
calibration. However by estimating the normalization parameters from ADLs, the
system could automatically adapt to such changes, without requiring repeated
individual calibrations.

6.8.1 Automatic physiological signals normalization using ADLs

We estimated normalization parameters from ADLs, by modeling the relation be-
tween the physiological signals values during lying down resting, walking at dif-
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Table 6.2: RMSE and (MAPE) for all clusters of activities evaluated in this work.
Necklace refers to accelerometers only models, Necklace+Physio combines ac-
celerometer, HR and respiration rate data, while Necklace+Physio Norm com-
bines accelerometer, normalized HR and respiration rate data. Wristband refers
to accelerometers only models, Wristband+Physio combines accelerometer and
GSR data, while Wristband+Physio Norm combines accelerometer and normal-
ized GSR data.

Lying Sedentary HWBM Walking Biking Running Avg
Necklace 0.38

(20)
0.80 (38) 1.35 (34) 1.56 (22) 1.90 (21) 1.59 (12) 1.26

(22)
Necklace +
Physio

0.34
(18)

0.62 (32) 1.01 (29) 1.47 (21) 1.72 (20) 1.51 (12) 1.11
(20)

Necklace
+ Physio
Norm

0.33
(18)

0.51 (28) 0.77 (22) 0.98 (14) 1.16 (14) 1.24 (9) 0.83
(15)

Wristband 1.01
(32)

4.38 (136) 3.16 (70) 1.74 (24) 2.30 (27) 2.21 (16) 2.47
(48)

Wristband
+ Physio

0.55
(26)

0.78 (43) 1.73 (48) 1.53 (22) 2.12 (26) 1.80 (13) 1.42
(28)

Wristband
+ Physio
Norm

0.45
(22)

0.57 (29) 1.62 (45) 1.42 (21) 1.79 (20) 1.54 (11) 1.23
(22)

ferent speeds and the physiological signals value during a high intensity activity
(Xphyhigh

). Xphyhigh
could be estimated with high accuracy for HR (R2 = 0.90),

while the relation between the measured and estimated Xphyhigh
was weaker for

GSR (R2 = 0.88) and respiration (R2 = 0.72). We speculate that these differences
are mainly due to two factors: a) the tighter relation between HR and EE, due to
the direct link between HR and oxygen intake, which makes HR a better predictor
of EE compared to GSR and respiration rate. b) The higher responsiveness of HR,
which is almost instantaneously affected by changes in activity type and intensity,
while GSR changes were slower. However, all models were able to significantly
improve EE estimation results compared to non-normalized signals.

RMSE for single EE estimation models using physiological data only was re-
duced by 60%, 25% and 18% for HR, GSR and respiration rate respectively, when
compared to non-normalized models. Most importantly, all EE estimation mod-
els using normalization showed no differences when compared to models devel-
oped using individual calibration, confirming the feasibility of our normalization
method. While single models were useful to determine the effectiveness of the
physiological signals normalization, accelerometer data is required since the es-
timation of the normalization parameters relies on the user context (activity and
walking speed), which is derived from accelerometer data.
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6.8.2 Personalized activity-specific EE estimation

The proposed method reduced error in activity recognition, impact of misclassi-
fication on EE estimation (by reducing misclassification between active and inac-
tive clusters) and EE estimation. While activity recognition is improved by only
2% when physiological signals were normalized (compared to non-normalized
physiological signals), the impact of the error reduction on EE is larger. Activity
misclassification of the Wristband is due to the fact that not only movement at the
wrist is weakly related to EE, but also to activity type (high intensity of wrist move-
ment can be detected even at rest, while e.g. writing). By combining accelerometer
and physiological signals, the misclassification error between inactive and active
clusters could be significantly reduced. Thus, avoiding high EE estimation errors
due to the application of the wrong activity-specific model. For example figure
6.6, shows that sedentary activities misclassification as biking was reduced from
11% to 5%, while biking misclassification rates as sedentary were reduced from
14% to 4%. Misclassification rates are significantly further reduced when normal-
ized physiological data was employed. Misclassification of sedentary activities as
biking dropped to 0.4%, while misclassification of biking as sedentary dropped to
0%. These improvements are due to the fact that normalized physiological signals
are more representative of the activity performed, while non-normalized physi-
ological signals are more representative of the underlying physiological differ-
ences in different persons (e.g. level of CRF). Previous research underestimated
the importance of physiological signals in activity type recognition, since multi-
ple accelerometer were used (Tapia 2008). Single sensor estimation approaches, as
used in this work, could improve user comfort over multi-devices solutions. When
dealing with single sensor devices, physiological data can provide significant im-
provements, especially when normalized. Finally, we showed error reductions in
EE estimation between 15 and 33%, compared to state of the art activity-specific
EE models combining accelerometer and non-normalized physiological signals.
Especially when the sensor is located where motion is weakly related to activ-
ity type and EE, combining accelerometers and normalized physiological signals
showed the most substantial improvements.

We recognize limitations in our study. Even though we developed an algo-
rithm to derive the normalization parameters automatically, during ADLs, we eval-
uated it using laboratory recordings only. We consider that the evaluation with
lab data is a necessary first step, as during lab recordings sufficient reference mea-
surements of EE could be acquired. In particular, out methodology allowed us to
confirm performances of the individual estimators (activity, walking speed, nor-
malization parameters, EE) during different PAs. Activities were chosen that are
often occurring in free living situations (e.g. lying and walking).

6.8.3 Conclusion and further work

In this work, we introduced a methodology to normalize physiological signals
using ADLs, in order to reduce inter-individual differences in physiological sig-
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nals between individuals and improve EE estimation accuracy. We believe that
our method is a significant step towards personalized physical activity monitor-
ing, and to fully exploit the tight individual relation between physiological signals
and EE. In this work, we confirmed that a relationship between physiological data
during low intensity ADLs and the normalization parameters exists. As future
work, we are currently investigating the practical applicability of the proposed
methodology in free-living situations and on a bigger sample size, as well as the
possibility to combine multiple sensors to further improve the estimate.
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Abstract

Accurate estimation of Energy Expenditure (EE) and cardiorespiratory fitness (CRF) is a
key element in determining the causal relation between aspects of human behavior related
to physical activity and health. In this paper we estimate CRF without requiring laboratory
protocols and personalize energy expenditure (EE) estimation models that rely on heart
rate data, using CRF. CRF influences the relation between heart rate and EE. Thus, EE
estimation based on heart rate typically requires individual calibration. Our modeling
technique relies on a hierarchical approach using Bayesian modeling for both CRF and EE
estimation models. By including CRF level in a hierarchical Bayesian model, we avoid
the need for individual calibration or explicit heart rate normalization since CRF accounts
for the different relation between heart rate and EE in different individuals. Our method
first estimates CRF level from heart rate during low intensity activities of daily living,
showing that CRF can be determined without specific protocols. Reference V O2max and
EE were collected on a sample of 32 participants with varying CRF level. CRF estimation
error could be reduced up to 27.0% compared to other models. Secondly, we show that
including CRF as a group level predictor in a hierarchical model for EE estimation accounts
for the relation between CRF, heart rate and EE. Thus, reducing EE estimation error by
18.2% on average. Our results provide evidence that hierarchical modeling is a promising
technique for generalized CRF estimation from activities of daily living and personalized
EE estimation.
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7.1 Introduction

In the recent past, wearable sensing technologies have been used to objectively
monitor human behavior, and started to provide unprecedented insights into the
relation between physical activity and health. While energy expenditure (EE) is
the most commonly used single metric to quantify physical activity, with many
algorithms proposed in the recent past [118, 29, 9, 67], cardiorespiratory fitness
(CRF) is not only an objective measure of habitual physical activity, but also a
useful diagnostic and prognostic health indicator for patients in clinical settings,
as well as healthy individuals [81].

Additionally, EE and CRF are tightly coupled when EE estimation is performed
based on heart rate data acquired using wearable sensors. The inverse relation be-
tween heart rate and CRF is one of the main causes behind the need for individ-
ual calibration of heart rate monitors, since differences in CRF cause differences
in heart rate but not in metabolic responses [104]. Thus, CRF estimation could
both provide a relevant health marker and be used to personalize EE estimation
models, improving estimation accuracy.

To date, the most commonly used measure for CRF level is the maximal oxygen
uptake, or V O2max. However, measures of V O2max are rare in healthcare, due
to safety concerns and laboratory infrastructure requirements. To tackle some
limitations of V O2max tests, submaximal test have been developed. Submaximal
tests rely on the relation between heart rate and V O2 at a certain exercise intensity,
which is fixed by the strict exercise protocol that has to be executed [18, 48, 54].
Instead of performing a specific test that specifies exercise intensity at which heart
rate is measured, we propose to use wearable sensor data to determine specific
contexts (e.g. activity type and walking speed) and model the relation between
heart rate in a specific context and CRF.

State of the art EE estimation models subdivide the estimation procedure into
two steps. First, an activity is recognized. Secondly, an activity-specific regres-
sion model is applied to estimate EE [29, 118]. Recent work showed that including
physiological data and normalizing heart rate can further improve results [9, 10].
Others, modeled the relation between EE and sensor data (e.g. accelerometer)
while capturing commonalities across users of differing anthropometric charac-
teristics [125, 126] using a hierarchical approach. Thus, structuring sensor data at
the first level of a hierarchical structure, and anthropometric data at the second
level of a hierarchical structure.

In this work, we hypothesized that using hierarchical Bayesian regression we
could model both the influence of anthropometric characteristics and CRF level on
accelerometer and heart rate data, and the variation in parameters depending on
the performed activity, as in activity-specific models for EE estimation. Thus, the
flexibility of a hierarchical regression framework was used to estimate CRF and
effectively personalize EE estimation models without the need for explicit heart
rate normalization. In particular, this paper provides the following contributions:

1. We propose a hierarchical Bayesian model to estimate CRF level from ac-
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celerometer and heart rate data acquired using a single body-worn sensor
during low intensity activities of daily living. Thus, the proposed model
does not require specific laboratory tests or individual calibration. We show
that low intensity activities of daily living (e.g. walking at 4 km/h) and heart
rate data are sufficient to reduce CRF estimation errors by 27.0% compared
to a model including anthropometric characteristics alone as predictors.

2. We extend previous work on EE estimation by proposing a hierarchical Bayesian
model including non-nested group level parameters to simultaneously model
the relation between activity type and EE, as well as between anthropomet-
ric characteristics, CRF and EE. Grouping by activity allows the model pa-
rameters to change as in activity-specific models. By including CRF among
the group level parameters, we are able to account for the relation between
CRF and heart rate and therefore personalize EE models. We show reduc-
tions in EE estimation error by 18.2% on average.

7.2 Related work

7.2.1 Maximal oxygen uptake

CRF is a well established and robust indicator of cardiovascular health and predic-
tor of premature all cause mortality [26, 41]. The most commonly used measure
for CRF level is V O2max. V O2max is the maximal capacity of the individual’s
body to transport and use oxygen (O2) during exercise. Direct measurement of
V O2 using gas analysis during maximal exercise is regarded as the most precise
method for determining V O2max [124]. Despite the indubitable importance of
CRF for health, measurements of V O2max in healthcare are rare, for different rea-
sons. The test is time consuming, has to be performed by specialized personnel in
a lab environment and expensive equipment is needed. The high motivation de-
mand and exertion of subjects makes the test unfeasible in many patients groups
[94].

7.2.2 Submaximal CRF estimation

To overcome these problems, many submaximal tests have been developed. Some
are non-exercise CRF models, others are specific lab protocols performed while
monitoring heart rate at predefined speeds (e.g. treadmill tests) or output powers
(e.g. bike tests) [18, 48, 54], without requiring maximal effort. Several non-exercise
models of CRF have been developed using easily accessible measures such as age,
sex, self reported physical activity level, body composition [69, 73]. Results typi-
cally provide decent accuracy at the group level [93]. However significant limita-
tions apply at the individual level, since each individual is assumed to be equal to
group averaged characteristics. Limited accuracy at the individual level is a com-
mon problem when physiological variables are not measured. Most submaximal
exercise tests rely on the relation between heart rate and V O2 at a certain exercise
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intensity, which is fixed by the strict exercise protocol that has to be sustained.
Submaximal exercise tests should be re-performed every time CRF needs to be
assessed and often require laboratory infrastructure.

7.2.3 CRF estimation in free living

Both maximal and submaximal tests to estimate CRF are affected by important
limitations. A more ideal solution, which possibly would be applicable to a larger
population, is to estimate V O2max during activities of daily living, without the
need for a predefined exercise protocol. Towards this direction, Plasqui et al. [100]
showed that a combination of average heart rate and activity level over a period
of 7 days correlates significantly with V O2max. However, by averaging over sev-
eral days, the relation between average heart rate and activity counts depends on
the amount of activity performed by the participants. Tonis et al. [120] explored
different parameters to estimate CRF from heart rate and accelerometer data in
laboratory settings. However, no models to extract these parameters in daily life
(e.g activity type to detect walking or walking speed estimation models) are pre-
sented. In their work, V O2max reference was not collected, but also estimated
from walking data.

7.2.4 EE estimation

Recent work on EE estimation relying on wearable sensor data proposed activity-
specific models as an improvement to previously used single or branched regres-
sion models [29, 9, 118]. Activity-specific EE estimation models consist of a two-
step process, where first an activity is recognized, and then an EE estimation
model is applied. Algorithms combining accelerometer and heart rate data consis-
tently provided improvements compared to accelerometers alone [9, 118]. How-
ever, decomposing the EE estimation process into activity-specific sub-problems
is not sufficient to take into account the different relation between heart rate and
EE in different individuals. During moderate to vigorous physical activity, dif-
ferences in heart rate between persons performing the same activity are mainly
due to CRF. However, differences in CRF level do not cause different metabolic
responses [104] (see Fig. 9.1). Thus, when estimating EE using heart rate data, in-
dividual calibration is necessary to deal with CRF-related differences between in-
dividuals [34]. For many practical applications personal calibration is not feasible
since it would require every user to perform a suitable fitness test, and other per-
sonalization techniques would be preferable. We recently introduced a methodol-
ogy to automatically normalize heart rate. By estimating a normalization param-
eter that describes heart rate at a certain workload during low intensity activities
of daily living [10, 13, 15] we could personalize EE estimates. The methodology
was based on the tight relation between CRF and heart rate at a certain workload,
which is also the basis of sub-maximal CRF tests. In our previous work we re-
quired explicit heart rate normalization by estimating a normalization parameter
representative of CRF, such as the heart rate while running at a certain intensity.
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In this current work, we propose a novel model in which, instead of normalizing
heart rate, we take the source of between-individual variability in heart rate, i.e.
actual CRF into account. To this aim, we collected reference CRF as measured by
a V O2max test and developed a model for personalizing EE estimation without
the need for explicit heart rate normalization. We hypothesized that CRF could
account for the varying relation between heart rate and EE in different individuals
by acting as a group level predictor in a hierarchical Bayesian model.

Figure 7.1: Relation between EE and heart rate in different participants during a
sequence of different physical activities. a) Absolute EE levels are similar due to
similar body weight. b) heart rate differs significantly between participants due to
different CRF level (V O2max participant 14 is 2104 ml/min, V O2max participant
25 is 3130 ml/min).

7.2.4.1 Hierarchical models

Activity-specific EE models are typically implemented using linear regression mod-
els. Linear regression can be extended to capture commonalities across a popu-
lation using a hierarchical linear model [61]. Hierarchical techniques use linear
models at levels within (individual level) and across (group level) participants. In
the remaining of this paper, we use the term group level parameters to indicate
parameters at the second level of a hierarchical structure. These parameters are
the ones influencing the relation between predictors at the first level of a hier-
archical structure and the outcome variable. We refer to parameters at the first
level of a hierarchical structure as individual level parameters [61]. These mod-
els were introduced in EE literature by Vathsangam et al. [126]. At one level the
authors included participant specific parameters relating inertial sensor features
to EE. At a second level they captured the inter-dependence of different person-
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specific parameters (e.g. anthropometric characteristics) using a (second) regres-
sion model. However [126], the authors limited their analysis to walking activities
and accelerometer data, for EE estimation.

In this work, we hypothesized that hierarchical Bayesian models could be used
to accurately model individual and group level differences in CRF level from
wearable sensor data during activities of daily living. We expected that estimated
CRF could be used to personalize heart rate-based EE estimations in order to im-
prove the estimate accuracy. Additionally, we use the flexibility of a hierarchical
regression framework to model both the influence of anthropometric character-
istics and CRF level parameters on accelerometer and heart rate data, as well as
the variation in parameters depending on the performed activity, as in activity-
specific models.

7.3 Methods

In this section we describe our approach to CRF and EE estimation, as illustrated
in Fig. 7.2. We use wearable sensor data, accelerometer Xacc and heart rate Xhr,
together with anthropometric characteristics Xant (e.g. height, body weight, etc.)
as input to our models. CRF yc is estimated from heart rate Xhr during low in-
tensity activities of daily living, i.e. contexts s, simulated in the lab. For example,
a context s can be walking at 4 or 6 km/h. Heart rate measured during a specific
context is used together with anthropometric characteristics Xant in a Bayesian
regression model to estimate CRF yc. Subsequently, we use the predicted CRF yc
as input for the second level of a hierarchical Bayesian model, to estimate EE yee.
The hierarchical modeling accounts for variance in CRF between individuals and
allows for more accurate EE estimation.

We introduce three hierarchical regression models, to estimate walking speed,
CRF and EE, as shown in Fig. 9.3. Details on the notation and modeling tech-
nique are provided in Appendix A. We indicate group level predictors as U and
individual level predictors as X .

Following a top down approach, we propose a hierarchical Bayesian model
to estimate EE (see Fig. 9.3.c). We consider i = 1, . . . , n sensor data samples,
p = 1, . . . , np participants and a = 1, . . . , T activities. Individual level parameters
βpa are influenced by both activity type a (which is the nature of activity-specific
models) and the participants’ anthropometric characteristics Xant and CRF yc,
however the grouping by activity and by participant are non-nested:

yeei ∼ N(Xeeiβi[pa], σ
2
ee), (7.1)

i = 1, . . . , n a = 1, . . . , T p = 1, . . . , np

βpa ∼ N(Ueep γpa,Σpa) (7.2)

a = 1, . . . , T p = 1, . . . , np

Xeei = [1, Xacci , Xhri ] ∈ Rn×(K+1) (7.3)
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Figure 7.2: Block diagram of the proposed CRF and EE estimation approach. a)
Activity type and walking speed are estimated from sensor data of a wearable
device (Xacc and Xhr). b) CRF is estimated from heart rate during low intensity
activities of daily living, such as walking, as derived from models a), together with
anthropometric characteristics Xant. Xa consists in heart rate during predefined
contexts (for example walking at 4 km/h), and therefore requires activity c and
speed ys information. c) EE is derived by combining Xacc, Xhr, Xant and CRF
yc in a hierarchical model, as shown in Fig. 9.3. Data flow is left to right. At
each processing block, indicated by vertical dashed lines, we indicated which data
streams are received from the previous processing blocks.



114
Chapter 7. Personalized cardiorespiratory fitness and energy expenditure

estimation using hierarchical Bayesian models

Figure 7.3: Proposed hierarchical models in plate notation. a) Walking speed es-
timation. Parameters βp vary depending on the person’s anthropometric charac-
teristics Us b) CRF estimation. Parameters βs vary by activity and speed. c) EE
estimation. Parameters βpa are allowed to vary depending on the performed ac-
tivity as well as on the persons’ anthropometric characteristics and CRF Uee. The
two groupings are non-nested. Estimated CRF yc from model b) is used as group
level parameter Uc for model c). Hyperparameters are not shown for clarity.

i = 1, . . . , n

Ueep = [1, Xantp , ycp ] ∈ Rnp×(L+1) (7.4)
p = 1, . . . , np

γpa ∼ N(µγpa , σ
2
γpa) (7.5)

where the matrix Xee is of dimension n × (K + 1) and include K individual-
level predictors such as heart rate Xhr and accelerometer features Xacc, over n
data samples. Uee is the matrix of dimension np × (L + 1) and include L group
level predictors controlling the individual level parameters βpa. The predictors
Uee include anthropometric characteristics Xant (e.g. body weight) and the esti-
mated CRF yc, for np participants. The hyperparameter matrix γpa is of dimension
(L+1)×(K+1)×T , where T is the number of activities. Σpa is the (K+1)×(K+1)
covariance matrix representing the variation of intercepts and slopes in the differ-
ent groups. µγpa and σγpa indicate hyperparameters for group level parameters
γpa.

Estimated CRF yc as included in the EE estimation model is shown in Fig. 9.3.b
and consists in a hierarchical Bayesian model allowing only heart rate coefficients
to vary by group, and can be described as:

ycp ∼ N(Xcpβc +Xapβs[p], σ
2
c ), p = 1, . . . , np (7.6)
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s = 1, . . . , R p = 1, . . . , np

Xcp = [1, Xantp ] ∈ Rnp×(D+1) (7.7)

p = 1, . . . , np

Xap = [Xhrap ] ∈ Rnp×1 (7.8)

p = 1, . . . , np

βs ∼ N(µβs , σ
2
βs

) (7.9)

where the matrix Xcp of individual level attributes is of dimension np× (D +
1) (i.e. body weight, height, age, sex). The associated parameters βc do not vary.
Contexts s are a set of combined activity types and walking speeds (e.g. walking
at 4 km/h, etc), which control the parameters βs for the attributesXa. Xa consists of
heart rate during predefined contexts s (indicated as Xhrap ), and is of dimension
np× 1. µβs

and σβs
indicate hyperparameters for group level parameters βs.

Activity type a is recognized from a set of T activities A = a1, . . . , at, using
Support Vector Machines (SVM). Implementation details can be found in Sec. 9.5.
Walking speed estimation ys is shown in Fig. 9.3.a and consists of a hierarchi-
cal Bayesian model allowing accelerometer features Xacc to vary depending on
anthropometric characteristics Xant:

ysi ∼ N(Xsiβi[p], σ
2
s), (7.10)

i = 1, . . . , n p = 1, . . . , np

βp ∼ N(Us γp,Σp) (7.11)

p = 1, . . . , np

Xs = [1, Xacc] ∈ Rn×(K+1) (7.12)

i = 1, . . . , n

Us = [1, Xant] ∈ Rnp×(L+1) (7.13)

p = 1, . . . , np

γp ∼ N(µγp , σ
2
γp) (7.14)

where the matrix Xs is of dimension n × (K + 1) and includes K individual-
level accelerometer featuresXacc, over n data samples. Us is the matrix of dimen-
sion np× (L+ 1) and includes L group level predictors controlling the individual
level parameters βi[p]. The predictors Us are the anthropometric characteristics
Xant such as body weight and height. The hyperparameter matrix γp is of dimen-
sion (L+ 1)× (K+ 1). Σp is the (K+ 1)× (K+ 1) covariance matrix representing
the variation of intercepts and slopes in the different groups. µγp and σγp indicate
hyperparameters for group level parameters γp.
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7.4 Evaluation study

7.4.1 Participants and data acquisition

Participants were 32 self-reported healthy individuals. Characteristics are reported
in Table 7.1. Written informed consent was obtained, and the study was approved
by the ethics committee of Maastricht University. Participants were selected to
have a wide range in physical activity levels and CRF. Measurements were ob-
tained using an ECG Necklace, a low power wireless platform which was config-
ured to acquire one lead ECG data at 256 Hz, and three-axial accelerometer data
at 32 Hz. The ECG Necklace was worn on the chest, during all recordings, since
the chest showed to be an optimal location for EE estimation in previous research
comparing multiple on body sensor locations [14]. A Continuous Wavelet Trans-
form based beat detection algorithm was used to extract R-R intervals from ECG
data, which output was manually examined to correct for missed beats that might
be caused by motion artifacts [102]. Participants were equipped with an indirect
calorimeter consisting of a mouthpiece and nose clip. Expired air was continu-
ously analyzed forO2 consumption andCO2 production (Oxycon-β), from which
EE was derived [128].

Table 7.1: Participants characteristics, mean and standard deviation (SD)

Female Male All
Characteristic Mean ± SD Mean ± SD Mean ± SD

Number 17 15 32
Age (y) 24.6 ± 2.5 23.7 ± 1.6 24.2 ± 2.1

Height (cm) 167.1 ± 5.9 177.0 ± 6.3 171.8 ± 7.8
Weight (kg) 60.4 ± 6.8 72.5 ± 11.1 66.1 ± 10.8

BMI (kg/m2) 21.6 ± 2.4 23.1 ± 3.5 22.4 ± 3.7
V O2max (ml/min) 2534.2 ± 488.5 3518.6 ± 401.2 2995.6 ± 667.0

7.4.2 Experiment protocol

Participants reported at the lab on three separate days and after refraining from
drinking (except for water), eating and smoking in the two hours before the record-
ings. Two laboratory protocols were performed. The first protocol included simu-
lated activities of daily living performed while wearing a portable indirect calorime-
ter. Activities included: lying down resting, sitting, sitting writing, standing,
cleaning a table, sweeping the floor, walking at different speeds (treadmill flat at
2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 km/h) and running at different speeds (treadmill flat at 8,
9, 10 km/h). The second protocol was a V O2max test. V O2max was determined
during an incremental test on a cycle ergometer [78], thus providing reference
data for CRF level, biking activity and EE while biking. Finally, anthropometric
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measurements including the participant’s body weight, height and body fat were
performed. Body fat was assessed using doubly labelled water [131]. Depend-
ing on lab and participant availability, the protocols were carried out in different
days. Activities were carried out for a period of at least four minutes, always in
the same order. Participants were allowed to rest between activities. Rest periods
were normally between one and two minutes.

7.4.3 Statistics and performance measures

CRF estimation models were compared against models including anthropometric
characteristics to describe individual variability. Our hierarchical EE estimation
approach including estimated CRF as group level predictor was compared against
two other estimation methods. First, we compared against state of the art activity-
specific EE models including accelerometer and heart rate features but without
CRF estimation. In literature, activity-specific EE models showed performance
superior to other linear and non-linear EE estimation methods [9, 30] and there-
fore were selected as baseline for our proposed method. Secondly, we compared
against hierarchical models including actual CRF (referred to as CRF measured) as
a predictor. Hierarchical models including actual CRF serve as a lower boundary
indicating the theoretical RMSE that is achievable.

Models were derived using data from all but one participants, and validated
on the remaining one (leave-one-participant-out cross validation). The same train-
ing set, consisting of data from all participants but one, was used to build feature
selection, activity recognition, walking speed estimation, CRF estimation and EE
estimation models. The remaining data (from one participant) was used for val-
idation. This procedure was repeated n (n = number of participants) times, and
results were averaged. Performance of the activity recognition models was evalu-
ated using the class-normalized accuracy = 1

Na

∑Na

c=1
recognizeda
relevanta

, where Na is the
total number of classes, and recognizeda and relevanta are the number of correctly
identified and total instances for activity a, respectively. Results for walking speed
are reported in terms of Root-mean-square error (RMSE) where the outcome vari-
ables was speed in km/h. Results for CRF and EE estimates are reported in terms
of RMSE, mean absolute percentage error (MAPE) and explained variation (R2),
where the outcome variables were V O2 in ml/min and EE in kcal/min respec-
tively. Paired t-tests were used to compare RMSE between models. Significance
was assessed at α < 0.05.

7.5 Implementation

7.5.1 Pre-processing

The dataset considered for this work contains about 88.6 hours of annotated data
collected from 32 participants, consisting of reference V O2, V CO2, three axial ac-
celeration, ECG andV O2max during laboratory recordings. A continuous wavelet
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transform based beat detection algorithm was used to extract RR intervals from
ECG data, which output was manually examined to correct for missed beats.
Breath-by-breath data acquired from the indirect calorimeter was resampled at 0.2
Hz. EE was calculated from O2 consumption and CO2 production using Weir’s
equation [128]. The first 1 or 2 minutes of each activity were discarded to remove
non-steady-state data. Activities were grouped into six clusters to be used for
activity classification. The six clusters were lying (lying down), sedentary (sitting,
sitting writing, standing), dynamic (cleaning the table, sweeping the floor), walking
(treadmill flat at different speeds), biking (cycle ergometer) and running (treadmill
flat at different speeds).

7.5.2 Features extraction and selection

Features extracted from the sensors’ raw data were used to derive all models. Ac-
tivity recognition was performed to classify the six activity clusters previously
introduced. Accelerometer data from the three axes were segmented in 5 s win-
dows, band-pass filtered between 0.1 and 10 Hz, to isolate the dynamic compo-
nent caused by body motion, and low-pass filtered at 1 Hz, to isolate the static
component, due to gravity. Feature selection for activity type recognition was
based on mutual information [22] and features were derived and selected from
our previous work [9], using a different dataset. The complete feature set can be
found in [9]. Selected features were: mean of the absolute signal, inter-quartile range,
median, variance, standard deviation, main frequency peak (i.e. mode of the frequency
spectra), low and high frequency band signal power. Heart rate was extracted from
ECG data over 15 seconds windows. Anthropometric characteristics (body weight,
height, age, and sex) were included in walking speed, CRF and EE estimation mod-
els.

7.5.3 Activity recognition

We implemented an activity recognition algorithm to classify the following clus-
ters of activities: lying, sedentary, dynamic, walking, running and biking. Given the
promising results in past research on activity recognition [9], we selected SVM as
classifier. For the SVM, we used a gaussian radial basis kernel (C = 1).

7.5.4 Hierarchical Bayesian regression models

Hierarchical Bayesian models introduced in Sec. 7.3 were implemented using R
and JAGS. Posterior estimations were performed by Gibbs sampling with 3 chains
and 10000 iterations. The first 500 iterations were discarded (burn-in period).
Anthropometric characteristics were height for the walking speed model, height,
weight, age and sex for the CRF estimation model and weight for the EE model. Ad-
ditionally, EE models included CRF as group level parameter. Individual level fea-
tures were accelerometer only for walking speed estimation models, accelerome-
ter and heart rate for EE estimation models and heart rate features for CRF esti-
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mation models. Prior distributions for all parameters and hyperparameters were
non-informative uniform distributions with µ = 0 and σ = 100.

7.6 Results

Figure 7.4: a) to d) relation between anthropometric characteristics and V O2max.
e) to h) relation between heart rate and V O2max for different activities. Regres-
sion line and 95% confidence intervals highlighting the inverse relation between
heart rate at different activities intensities and V O2max are shown in plots e) to
h).

Subject-independent class-normalized accuracy of the SVM was 92.7%. More
specifically, the accuracy was 95.4% for lying, 95.2% for sedentary, 81.9% for dy-
namic, 96.3% for walking, 87.5% for biking and 99.7% for running. Walking speed
estimation RMSE was 0.53 km/h.

Fig. 7.4 shows the relation between anthropometric characteristics andV O2max,
as well as the relation between heart rate and V O2max for different activities.
Correlation between heart rate and V O2max was highest for running activities
(r = −0.71), as shown in Fig. 7.4.e. Correlation increased between r = −0.52 and
r = −0.66 for increases in low intensity activities of daily living, e.g. for walking
between 4 to 6 km/h, regardless of anthropometric characteristics.

Fig. 7.5 shows results of the CRF estimation model for three conditions. As
a CRF estimation baseline we considered anthropometric characteristics (model
referred to as Ant in Fig. 7.5) as predictors, resulting in RMSE of 382.3 ml/min
(R2 = 0.56). RMSE was reduced to 279.5 ml/min (26.9% error reduction, p =
0.02 < α,R2 = 0.73) and 279.2 ml/min (27.0% error reduction, p = 0.02 < α,R2 =
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0.74) when including heart rate while walking at 4 km/h and 6 km/h respectively
as predictors. Detailed results for men and women are shown in Table 7.2. While
error is relatively higher for women, differences are not significant (p = 0.25 > α
for Ant, p = 0.73 > α for Walk 4 km/h, p = 0.30 > α for Walk 6 km/h).

Figure 7.5: a) V O2max estimation accuracy for different models over all partic-
ipants. Ant does not include heart rate data but anthropometric characteristics
only, HR Walk 4 and HR Walk 6 include heart rate while walking at 4 km/h and
6 km/h respectively. b-g) Scatterplots and residuals plot for measured and esti-
mated V O2max according to the three models of plot a).

Table 7.2: CRF estimation results.

CRF model Sex RMSE ml/min MAPE %
Ant all 382.3 14.0

male 336.5 9.7
female 422.7 17.8

Walk 4 km/h all 279.5 9.8
male 266.3 7.7

female 291.2 11.7
Walk 6 km/h all 279.2 10.2

male 238.6 7.1
female 315.1 12.9

EE estimation results are shown in Fig. 7.6. For an EE estimation baseline we
considered for this analysis state of the art activity-specific EE estimation models.
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Activity-specific EE estimation models (no CRF) included accelerometer and heart
rate data as predictors and resulted in RMSE of 0.88 kcal/min (R2 = 0.94). Ad-
ditionally, we compared results obtained with the proposed hierarchical model
(CRF estimated) to the theoretical case where actual CRF is available, instead of be-
ing estimated by our architecture (CRF measured). RMSE was reduced from the no
CRF condition to 0.72 kcal/min (18.2% error reduction, p = 0.003 < α,R2 = 0.95)
for CRF estimated and to 0.69 kcal/min (21.8% error reduction, p = 0.002 < α,
R2 = 0.96) for CRF measured. In Table 7.3 we provide detailed results for moderate
to vigorous activities only, since personalizing the relation between heart rate and
EE during sedentary activities is not beneficial [13]. When including estimated
CRF (Fig. 7.6, no CRF vs CRF estimated), EE RMSE was reduced from 0.61 kcal/min
to 0.56 kcal/min for dynamic (8.9% error reduction), from 0.60 kcal/min to 0.55
kcal/min for walking (8.2% error reduction), from 2.18 kcal/min to 1.62 kcal/min
for biking (25.5% error reduction) and from 1.36 kcal/min to 1.11 kcal/min for
running (18.4% error reduction).

Table 7.3: EE estimation results. Activity All includes lying, sedentary, dynamic,
walking, biking and running activities. Reference EE is shown as mean± standard
deviation and was collected by indirect calorimeter. EE and RMSE are reported
in kcal/min.

EE model Activity EE RMSE MAPE %
No CRF all 4.98 ± 4.14 0.88 18.4

dynamic 2.64 ± 0.71 0.61 23.7
walking 3.96 ± 0.59 0.60 13.6
biking 10.50 ± 2.38 2.18 22.1

running 10.35 ± 1.85 1.36 13.2
CRF estimated all 4.98 ± 4.14 0.72 16.2

dynamic 2.64 ± 0.71 0.56 21.2
walking 3.96 ± 0.59 0.55 12.0
biking 10.50 ± 2.38 1.62 15.6

running 10.35 ± 1.85 1.11 10.6
CRF measured all 4.98 ± 4.14 0.69 15.7

dynamic 2.64 ± 0.71 0.54 20.6
walking 3.96 ± 0.59 0.52 11.3
biking 10.50 ± 2.38 1.48 14.3

running 10.35 ± 1.85 1.10 10.6
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Figure 7.6: EE estimation RMSE for a) all activities averaged, b) dynamic, c) walk-
ing d) running and e) biking. Three models are compared, no CRF, indicating
state of the art activity-specific EE models, CRF estimated indicating the proposed
hierarchical Bayesian approach, where estimated CRF is used as group level pa-
rameter, and CRF measured which consists in the same model as CRF estimated, but
including actual V O2max as measured in the lab. CRF measured serves as a lower
limit to the RMSE achievable by the proposed approach. f) Effect of CRF in EE
estimation for an unfit participant. Without CRF, EE was underestimated, due to
the higher heart rate. Including CRF increased the EE estimate, therefore reducing
RMSE. No difference appeared between EE estimation models using estimated or
measured CRF for this participant. Reference EE is shown in light gray.

7.7 Discussion

In this work, we demonstrated that hierarchical Bayesian regression could be used
to accurately model individual and group level differences in CRF estimated from
heart rate data during low intensity activities of daily living. We also validated our
hypothesis that such estimated CRF could be used to personalize heart rate-based
EE estimation models in order to improve the estimate accuracy for different activ-
ities. We adopted hierarchical Bayesian models as a powerful and flexible exten-
sion to conventional regression frameworks, structuring our models into groups
which are both nested and non-nested.

To estimate CRF, we relied on the relation between CRF and heart rate at a cer-
tain submaximal intensity (e.g. while walking). Heart rate parameters were al-
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lowed to vary by activity type and speed, in order to let the proposed CRF model
provide estimates without constraining the participant in performing specific ac-
tivities or walking at predefined speeds, as normally done in submaximal labora-
tory tests. By using a hierarchical approach where parameters vary based on the
activities performed by the participant, we also allow the CRF estimation model
to use different parameters based on the participant activities, thus potentially in-
creasing accuracy when more intense activities are performed. We chose walking
speeds of 4 to 6 km/h for our analysis, since speeds close to this range were often
reported as the average walking speeds in healthy individuals (5.3 km/h in [36]
and 5 ± 0.8 km/h in [89]). We analyzed the impact of different features on CRF
estimation, such as anthropometric characteristics, and the relation between heart
rate while walking at different speeds. Anthropometric characteristics alone were
shown to estimate CRF with in past research [69, 73]. Our models confirm these
findings, due to the high correlation between V O2max and most anthropomet-
ric characteristics, such as body weight, height and gender (see Fig. 7.4). However,
only when including in the models physiological data such as the heart rate, dif-
ferences between participants with similar anthropometric characteristics can be
estimated. By including heart rate data while walking at 4 km/h to 6 km/h we
could reduce RMSE up to 27.0%. Since CRF is a strong and independent predic-
tor of all-cause and cardiovascular mortality, the proposed CRF estimation model
could be used to provide accurate information about an individual’s health with-
out the need for laboratory infrastructure or specific tests.

As a second contribution, we developed a two level hierarchical Bayesian model,
where accelerometer and heart rate parameters were allowed to vary by activity-
type, as in activity-specific EE models, and by anthropometric characteristics as
well as CRF level. Previous work by our group [10, 13] as well as others [118]
showed that normalizing heart rate using a normalization parameter representa-
tive of CRF, such as the heart rate at a certain workload, could significantly reduce
inter-person differences in heart rate and consequently improve EE estimation ac-
curacy. The proposed hierarchical structure goes to the root of the problem, in-
cluding estimated CRF level as a group level parameter able to control the relation
between heart rate and EE. Since CRF is estimated from activities of daily living
of varying intensity, no predefined test or laboratory calibration is necessary in
order to improve EE estimation models. EE estimation RMSE was reduced by
8.9%, 8.2%, 25.5% and 18.4% for dynamic, walking, biking and running activities
respectively. In our models, we excluded sedentary activities. In previous work
heart rate during sedentary behavior was not found to be beneficial in estimat-
ing EE. During sedentary behavior, heart rate is affected by other factors such as
stress, emotions, etc., and is typically weakly correlated with EE, and therefore
often omitted for EE estimation [9, 43]. While RMSE for biking and running is
relatively high compared to other activities, larger errors are expected for intense
activities. Nevertheless, we believe that the RMSE reductions compared to cur-
rent state of the art methods (up to 25%) are practically relevant, especially as the
proposed method does not require laborious individual calibration. Moreover,
the estimation performance obtained in this work is close to the theoretical per-
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formance estimate using actual CRF level data as shown in Table 7.3. Thus, mea-
suring heart rate in low intensity activities of daily living is sufficient to estimate
CRF at sufficient accuracy to obtain optimal EE estimation results.

Personalizing a system goes beyond the inclusion of the individual’s anthro-
pometric characteristics in CRF or EE models, as shown by the increased accuracy
of the proposed models. While our CRF estimation model could be applied to a
wide population and provide feedback on health status, we expect that our EE
normalization approach will be most useful for individuals having a moderately
active lifestyle. Sports training devices, where users and trainers are interested in
accurate EE estimation under moderate to vigorous workloads, could benefit from
inclusion of CRF in the EE estimation models. Additionally, less active individ-
uals willing to take up a more active lifestyle, or undergoing a physical activity
intervention targeted in modifying behavior to increase level of activity, would
also benefit. As a matter of fact, in the latter case CRF takes even a bigger role,
since it typically changes faster in the transition from inactive to active lifestyle,
and failing to capture these changes would result in higher errors in EE estima-
tion. New opportunities for applications targeted at inducing behavioral change
by creating a feedback loop involving objectively measured physical activity level
and EE, as well as change in CRF and associated reduced risk of disease, could be
developed building up on the proposed approach.

We recognize limitations in our study. Even though we developed an algo-
rithm able to derive CRF during regular activities, by combining walking heart
rate data with the subjects anthropometric characteristics, we tested it using lab-
oratory recordings only. We consider that the evaluation with lab data is a nec-
essary first step, which can be sufficiently covered with reference measurements
of CRF and EE. We proposed activity recognition and walking speed estimation
models to detect activity type and walking speed such that the proposed model
could be deployed in free living. Some activities (e.g. dynamic and biking) were
recognized with suboptimal accuracy, due to sensor positioning and high variabil-
ity in movement involved, for example, during household activities. Nevertheless,
activity recognition performance for walking activities used by our models was
sufficiently high to obtain useful EE estimation performance. We consider these
results promising for free-living deployment in further research. Additionally,
while our participants population included a wide range of weight, height, BMI
and was balanced between male and female, their limited age range prevents us
from generalizing the results to other age groups. However, our CRF models pro-
vide RMSE comparable with ordinary submaximal tests [111] without requiring
specific exercises or individual calibration. Another point of attention is the dif-
ference in accuracy of our CRF estimation model in men and women. The slightly
higher error for women might be due to a combination of factors. For example, the
higher V O2max standard deviation suggests higher variability in the female pop-
ulation. Adding explanatory variables such as body fat, which is known to have
an important role in V O2max estimation [100] might reduce this error. However,
our goal was to use basic anthropometrics that can be easily acquired without
laboratory tests. Therefore we limited our analysis to body weight. However,
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given the small difference in RMSE for EE estimation models using either CRF
estimated by our procedure (CRF estimated) or actual V O2max (CRF measured),
the higher error found for CRF estimation in women does not seem to negatively
affect personalization of EE estimation models.

In this work, CRF estimation was used to model the relation between heart rate
and EE in participants of different fitness level, effectively reducing EE estimation
error during moderate to vigorous physical activities. No intense activities or lab-
oratory tests were used for CRF estimation and EE personalization. Instead, heart
rate during low intensity activities of daily living was used as a predictor in our
models, which provides for the practical applicability of the proposed method.
Additionally, we used only simple anthropometrics data, excluding body fat, to
allow for the development of models which do not require parameters acquired
under laboratory conditions. Our methodology could be applied to other prob-
lems in which the relation between physiological parameters (e.g. heart rate, gal-
vanic skin response, respiration, etc.) and an outcome variable (e.g. energy ex-
penditure, mental stress, disease progression, etc.) varies between individuals.
By modeling the source of variation, in our case CRF, at the second level of a hier-
archical structure, the relation between physiological data and the outcome vari-
able is modeled. Consequently, no explicit normalization is needed that would
require individual calibration.
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Appendix A

In this section we clarify the mathematical notation used in this manuscript. We
adopted the notation of [61]. Each sample, is indicated by an index. In the follow-
ing equations we will use i to indicate the index. The classical linear regression
model where the predicted variable is indicated by yi and the array of K predic-
tors is indicated by Xi, can be written in mathematical form as:

yi = Xi1β1 + . . . Xikβk + εi, εi ∼ N(0, σ2), i = 1, . . . , n (7.15)

Xi1 is the constant term, whileXi2 toXik are features, for example accelerometer
or heart rate data. We assume independent normal distribution with mean 0 and
standard deviation σ for ε. Equation 1 can be written in compact form as:

yi = Xiβ + εi, εi ∼ N(0, σ2), i = 1, . . . , n (7.16)

Equivalently to equation 2, we can express the relation between predictors and
predicted variables as:

yi ∼ N(Xiβ, σ
2), i = 1, . . . , n (7.17)
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We adopted the latter notation for simplicity and reduced verbosity, especially
when multiple parameters and levels are included in the models.

Hierarchical models are a generalization of linear regression models such as
the one described in equation 3 in which parameters act at two levels. We use the
term group level parameters to indicate parameters at the second level of a hierar-
chical structure. These parameters are the ones influencing the relation between
predictorsX and the outcome variable y. In the context of hierarchical modeling,
parameters β are indicated as individual level parameters [61]. Individual level pa-
rameters β, (i.e. the slopes and intercepts) are allowed to vary by group. Thus,
additionally to the variables already introduced, we introduce the group index j
and represent group membership as j[i]. We also introduce group level param-
eters as γ. Thus, we define a hierarchical model in which parameters β vary by
group as:

yi ∼ N(Xiβj[i], σ
2), i = 1, . . . , n (7.18)

In 4, individual level parameters β vary depending on the group j. If there are no
group level predictors, β acts similar to indicator variables in standard regression.
This is the case for example of our activity-specific EE models, where different
coefficients are derived for each activity class, however there is no group level
predictors. Individual level parameters β in this case can be expressed as:

βj ∼ N(µβ , σ
2
β), j = 1, . . . , J (7.19)

Where µβ and σ2
β are hyperparameters. Alternatively, parameters β can also be

estimated by higher level regression models, including group level parameters γ
and a set L of group level predictors U . This is the case of EE estimation models
where anthropometric characteristics such as body weight, height, etc., are used
as group level predictors U . The notation used in this case is the following:

βj ∼ N(Ujγ, σ
2
β), j = 1, . . . , J (7.20)

γ ∼ N(µγ , σ
2
γ), j = 1, . . . , np (7.21)

Where γ is of dimension K + 1× L+ 1, µγ and σ2
γ are hyperparameters.
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Abstract

We introduce an approach to personalize energy expenditure (EE) estimates in free living.
First we use Topic Models (TM) to discover activity composites from recognized activ-
ity primitives and stay regions in daily living data. Subsequently, we determine activity
composites that are relevant to contextualize heart rate (HR). Activity composites were
ranked and analyzed to optimize the correlation to HR normalization parameters. Finally,
individual-specific HR normalization parameters were used to normalize HR. Normal-
ized HR was then included in activity-specific regression models to estimate EE. Our HR
normalization minimizes the effect of individual fitness differences from entering in EE re-
gression models. By estimating HR normalization parameters in free living, our approach
avoids dedicated individual calibration or laboratory tests. In a combined free-living and
laboratory study dataset, including 34 healthy volunteers, we show that HR normalization
in 14-day free living data improves accuracy compared to no normalization and normal-
ization based on activity primitives only (29.4% and 19.8% error reduction against lab
reference). Based on acceleration and HR, both recorded from a necklace, and GPS acquired
from a smartphone, EE estimation error was reduced by 10.7% in a leave-one-participant-
out analysis.
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8.1 Introduction

Wearable technology can provide novel insights on the relation of physical activ-
ity (PA) and health [108]. Energy expenditure (EE) is the most common param-
eter used to quantify PA [125], and is typically estimated using acceleration and
heart rate (HR) sensors [43, 52]. Acceleration reflects a relation between motion
and EE while HR shows a strong correlation with EE via the relation of EE and
oxygen consumption. State-of-the-art EE estimation methods first classify user
activity and subsequently apply activity-specific regression equations, to estimate
EE [29, 118, 14]. Using HR in activity-specific regression equations showed consis-
tent improvements in EE estimation compared to using acceleration only [10, 34].
However, HR during an activity is specific to a person since it depends on the
individual’s cardiorespiratory fitness (CRF) level [104]. To derive a reliable EE
estimate, it is therefore necessary to normalize HR according to an individual’s
fitness. In turn, the normalized HR could serve as independent variable in EE
regression models. Normalizing HR requires information on the individuals’ fit-
ness level, as fitness and HR are tightly related for a given workload [18]. Thus, in
our previous work we predicted a surrogate of fitness, i.e. the HR while running
at 9 km/h, and used it as HR normalization parameter to reduce EE estimation
error [10]. As a proof of concept for HR normalization which does not require in-
tense activities to be performed in laboratory settings, we estimated the HR while
running at 9 km/h from the HR during low intensity activities. In particular, we
defined a regression model using as predictors the HR while walking at a certain
speed. However, our validation was performed in laboratory settings.

HR interpretation in free living is more complex. While for an individual any
specific lab-performed activity may show little variation in HR, HR in free living
is likely depending on context. The presence of various daily life stressors re-
quires a novel estimation approach compared to laboratory studies. In particular,
we assume that HR in free living is not only affected by activity primitives such
as walking, but by a combination of activity primitives and more abstract activ-
ity composites such as social interactions, doing sport, etc. Thus, to exploit HR
normalization for EE estimation in free living, activities must be recognized and
interpreted according to the situation in which they were performed.

In this work, we present a method to derive HR normalization parameters dur-
ing free living and personalize population based EE estimation models accord-
ingly. In particular, our contribution is three-fold:

1. We define HR normalization parameters as surrogates of fitness levels esti-
mated by contextualized HR. We contextualize HR in free living with a com-
bination of activity primitives, activity composites and walking speeds. We
use HR normalization parameters to normalize HR and estimate EE more
accurately at the individual level.

2. We present a framework to discover activity composites in free living, and
determine which activity composites are more suitable for HR normaliza-
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tion. To discover activity composites we first utilize topic models (TM). Sec-
ondly, we determine relevant activity composites by ranking activity compos-
ites and analyzing the relation between ranked activity composites and HR
normalization parameters across individuals.

3. We evaluate our approach in a combined free-living and laboratory study,
including 34 participants. A laboratory protocol was used to obtain refer-
ence data for activity primitives and HR normalization. A 14-day free-living
protocol was used to evaluate the estimation performance for HR normaliza-
tion and personalization of EE estimation, yielding a 10.7% error reduction
in EE estimation.

8.2 Related work

Accelerometer and HR monitors are the most commonly used devices for EE es-
timation [43, 52]. The latest EE estimation algorithms extend approaches based
on simple linear regression models by splitting the estimation process into two
phases. First, an activity is recognized. Secondly, an activity-specific regression
model is used to predict EE [29, 118, 14]. Including HR data in the activity-specific
linear models showed consistent improvements in EE estimation accuracy com-
pared to algorithms using accelerometer only data [10, 34]. However, breaking
down the EE estimation process into activity-specific sub-problems is not suffi-
cient to take into account the different relation between HR and EE in different
individuals [10]. Fig. 9.1 shows how participants with similar body weight con-
sume similar amounts of energy. However, the different CRF level results in very
different HR, but no difference in metabolic responses [104]. Thus, estimating EE
based on HR results in under and overestimations [10, 13].

8.2.1 Personalized EE estimation

HR showed higher correlation with EE compared to accelerometer data [13]. How-
ever, subject-independent models including HR performed sub-optimally, con-
firming the need for individual calibration [13]. Individual calibration limits prac-
tical applicability, since the individual relation between HR and EE needs to be
determined for the algorithm to be accurate. To the best of our knowledge, the
only attempt to automatically normalize HR without requiring individual calibra-
tion was reported by our group. In [10], we introduced an approach to normalize
HR by estimating a HR normalization parameter. A regression model including HR
measured during activities of daily living simulated in the lab (e.g. walking) was
used to estimate HR during intense exercise, such as running at 9 km/h. The esti-
mated HR was used as the HR normalization parameter. While EE estimation error
was reduced by the proposed methodology, we used laboratory recordings only
to build our models. Supervised recordings allowed us to acquire data free of arti-
facts due to other daily life stressors, which was a necessary first step to prove the
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effectiveness of our approach. However, the presence of a multitude of stressors
in free living urges for a different solution.

8.2.2 Context recognition

Our assumption is that physiological data, for example HR, in free living settings
is not only affected by activity primitives, but by both activity primitives and activ-
ity composites. Incorporating contextual information beyond activity primitives

Figure 8.1: Relation between EE and HR in two participants during walking and
running activity primitives. a) Absolute EE levels are similar due to similar body
weight. b) HR differs between participants due to different CRF level (V O2max
participant 1 is 2104 ml/min, V O2max participant 2 is 3130 ml/min). Thus, EE
estimation based on HR would cause large individual error.

could potentially improve interpretation of HR or other physiological data in free
living. Fig. 8.2 shows HR during activity primitives and activity composites per-
formed in free living by one participant. HR during the same activity primitives
changes depending on the activity composites. For example, HR during social in-
teractions (plot b) is higher than during work (plot a) for both sedentary and walking
activity primitives. Variations in HR can be noticed in different activity compos-
ites, and motivate the need for additional contextual information when interpret-
ing HR data. Activities are often thought of in a hierarchical manner, starting from
low level activity primitives, and building up to more complex activity compos-
ites [72]. Activity primitives are typically considered as a set of atomic activities
that can be determined on a short time window [118], directly from low level raw
sensor data. Atomic activities can be obtained using supervised machine learn-
ing methods, across a wide population. An example of activity primitives can
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be a set of postures and locomotion activities, such as: lying down, sedentary, dy-
namic, walking, biking and running, as adopted in previous research [29, 14]. On
the contrary, higher level contextual information, such as activity composites, can
benefit from a different recognition approach. Activity composites (e.g. social in-
teractions, commuting, etc.) are personal and need unsupervised methods able
to discover different patterns in each individual, depending on their behavior. A
possible solution is the use of TMs. TMs were initially introduced by the text
mining community, to discover topics from corpus of documents, starting from
words [27]. For activity recognition, the same concept was applied to discover
activity composites from activity primitives [72]. Recent work investigated the
impact of multiple latent Dirichlet allocation (LDA) parameters for activity com-
posites discovery, showing promising results [112]. In this work, we identified
activity composites that are representative of HR normalization parameters in a
unsupervised manner. To this aim, we introduced the concept of relevant activity
composites.
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Figure 8.2: HR during activity primitives and activity composites performed in
free living by one participant. Activity composites were manually annotated by
the participant. HR during the same activity primitives changes substantially de-
pending on the activity composites: a) work, b) social interactions.

8.3 Methods

We include HR in activity-specific EE estimation models after being normalized
by the HR normalization parameter, HRnp. HRnp was predicted from HR while
walking at a recognized speed, only during relevant activity composites. Relevant
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activity composites are activity composites in which HR is representative of HRnp,
and were derived during training phase. We first utilized topic models (TM) to
derive activity composites. Then, we determined relevant activity composites by
ranking activity composites and analyzing the relation between ranked activity
composites and HR normalization parameters across individuals, as described in
Sec. 8.3.2. Following a top down approach, EE was estimated by activity-specific
models (see Fig. 8.3). For each activity primitive ci, a regression model is defined:

C = {c1, . . . , ccn}, ∀ci ∈ C,

∃ yacti = Xactiβacti + ε (8.1)

Xacti = {Xacci , Xanti , Xhri}

where we assumed cn activity primitives C, recognized by a combined Support
Vector Machine (SVM) classifier and Hidden Markov Models (HMM). Input for
the SVM classifier are accelerometer features Xacc. The HMM is used to smooth
transitions over the SVM output by defining the hidden states as the actual activity
primitives ci. For an activity primitive ci, yacti is the dependent variable, the vector
of target EE values, β is the vector of regression coefficients, andXacti is the vector
of input features. Features Xacti used in the activity-specific regression models
can be grouped into accelerometer features Xacci , anthropometric characteristics
Xanti , and normalized HR, Xhri , as shown in Fig. 8.3.

8.3.1 HR normalization parameter estimation

Normalized HR was obtained as shown in Fig. 8.3 by dividing HR by person-
specific HR normalization parameters HRnp. In turn, HRnp was estimated from
contextualized HR data HRctx∗ in free living:

Xhr =
HR

HRnp
(8.2)

HRnp = HRctx∗βnp + ε (8.3)

HRctx∗ refers to HR data in a specific context, e.g. HR while walking at a cer-
tain speed during relevant activity composites. Activity composites were discovered
using LDA. LDA is a generative probabilistic model which discovers K activity
composites, from S time windows of N words yn. Words yn were stay regions and
activity primitives (see Sec. 9.5). According to the generative process, for each
word yn, we first draw the activity composite zn. Each assigned activity compos-
ite z ∈ 1 : K is derived from a multinomial distribution defined by the parameter
θs. θs is the distribution over activity composites for time window s:

θs ∼ Dir(α) 1 ≤ s ≤ S (8.4)

zn ∼Mult(θs) 1 ≤ s ≤ S, 1 ≤ n ≤ N (8.5)
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Figure 8.3: Proposed approach to personalized EE estimation. HR data HR were
normalized by the HR normalization parameter HRnp, resulting in the normal-
ized HR Xhr, before being used in activity-specific EE models.

Figure 8.4: Proposed approach to determine the HR in a specific context HRctx∗,
i.e. HR while walking at a certain speed during relevant activity composites, and
estimate the HR normalization parameter HRnp. Activity primitives c and stay
regions sr are determined from accelerometer featuresXacc and GPS coordinates
Xcoo. LDA uses activity primitives and stay regions to discover a set of activity
composites, which are ranked, determining relevant activity composites. Finally, a
regression model is used to estimate the HR normalization parameterHRnp from
contextualized HR, HRctx∗.
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LDA defines θs as a Dirichlet distribution with hyperparameter α. Then, an-

other multinomial is used to choose a word yn, conditioned on the activity com-
posite zn, p(yn|zn):

yn ∼Mult(βzn) 1 ≤ n ≤ N (8.6)

Where β is defined as the probability of each word n ∈ 1 : N for topic z. The
joint distribution can be specified as:

p(y, z, θ, φ|α, β) =

S∏
s=1

∫
p(θs, α)

N∏
n=1

K∑
z=1

p(zsn|θs)p(ysn|zsn, β)dθs (8.7)

We were interested in estimating the distributions of the parameter θs. Multi-
ple activity composites were derived by LDA in each time window s, each activ-
ity composite being assigned a probability. For each time window we considered
only the activity composite maximizing θs, which we selected as the window’s
main activity composite zs.

8.3.2 Relevant activities composites

During the training phase, we defined a feature selection method to determine
which activities composites to use as relevant activity composites. The HR while
walking at a certain speed was computed for each main activity composite zs and
participant par, resulting in the matrix HRctx. HRctx is of dimension K × npar,
where K is the number of activity composites z, and npar is the number of par-
ticipants par. One column of the matrix HRctx, i.e. contextualized HR for one
participant across activity composites, is shown in Fig. 8.6.b. LDA-derived activ-
ity composites do not include semantics and cannot be compared across partic-
ipants. To overcome the problem of comparing activity composites, our feature
selection method ranks activity composites using a features set T . For example,
T1 ∈ T could be the total time spent in each activity composite, as shown in Fig. 8.6.
Then, HRctx is ranked by feature T1, allowing us to investigate the relation be-
tween the HR in different activity composites andHRnp, across participants. The
ranking orders HRctx by values of T from maximum to minimum, as shown in
Fig. 8.6.c. Since we were interested in highlighting commonalities between activ-
ity composites, rankedHRctx were smoothed by a moving average ofm elements
over activity composites, resulting in HRctx (see Fig. 8.6.d). We conclude the
training phase by determining which feature in T maximizes Pearson’s correla-
tion between HRctx and HRnp. We define the vector of correlations rT for a set
of TN features:

rT = {rrankT1
, . . . , rrankTN

}, (8.8)

rranki = r(HRctxpar={1,...,npar},i , HRnppar={1,...,npar}) (8.9)

Where rranki is the correlation between the vector HRctx and HRnp, among all
participants par for a feature Ti. The feature Ti = max rT showing the highest
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correlation between HRctx and HRnp was chosen as indicative of which activity
composites are such that HR is more representative of fitness levels, i.e. relevant
activities composites. For new participants, the function f in Fig. 9.4 ranks HRctx
based on the feature Ti maximizing the correlation on our training set, and deter-
mines HRctx∗. HRctx∗ is the HR while walking at a certain speed during relevant
activities composites. Thus, HRctx∗ is the first element of the vector of ranked and
smoothed HR, HRctx. Once determined, HRctx∗ is used to estimate the HR nor-
malization parameter HRnp and normalized HR, as shown in Eq. 2 and 3.

Figure 8.5: ECG Necklace, the wearable sensor used to collect accelerometer and
ECG data in this study. The ECG Necklace was worn during laboratory protocols
and free living recordings close to the body’s center of mass

8.4 Evaluation study

8.4.1 Participants and data acquisition

Participants were 34 (14 male, 20 female) self-reported healthy individuals, mean
age 23.7 ± 2.5 years, mean weight 66.3 ± 10.6 kg, mean height 172.4 ± 8.3 cm,
mean BMI 22.2± 2.5 kg/m2 and mean V O2max 3002.9± 665.0 ml/min. Written
informed consent was obtained, and the study was approved by the ethics com-
mittee of Maastricht University. The sensor platform used was the ECG Necklace,
which was configured to acquire one lead ECG data at 256 Hz, and three-axial
accelerometer data at 32 Hz (see Fig. 9.6). The ECG Necklace was worn close to
the body’s center of mass, thus in an ideal location for EE estimation, as reported
in literature [14]. The ECG Necklace was worn during laboratory protocols and
free living recordings. A Continuous Wavelet Transform based beat detection algo-
rithm was used to extract R-R intervals from ECG data recorded under laboratory
conditions, which output was manually examined to correct for missed beats that
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Figure 8.6: Exemplary diagram of our approach to discover relevant activity com-
posites for the case of walking at 5.5 km/h. a− b) Walking speed ys, activity prim-
itives c and activity composites z are used to determine HR in specific contexts,
HRctx. c)HRctx are ranked by activity composite feature T1, the total time spent in
each activity composite. Bars in plot b) indicate values for T1 in each activity com-
posite, while numbers are average HR while walking at 5.5 km/h for each activity
composite. d) Ranked HRctx were smoothed by a moving average of m = 2 el-
ements. e) HRctx across participants are correlated with the HR normalization
parameterHRnp in the training dataset. f). The feature Ti maximizing the corre-
lation is chosen to select relevant activity composites.
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might be caused by motion artifacts [102]. For ECG data recorded under unsuper-
vised free-living conditions, we selected high quality data by discarding periods
in which more than 15% errors were detected in a time window. Errors were de-
fined as consecutive RR intervals differing more than 20%, as typically reported in
clinical practice. Additionally, during free living each participant carried a Sam-
sung Galaxy S3 used to record GPS coordinates at 5 minutes intervals. During
laboratory recordings participants were equipped with a indirect calorimeter an-
alyzing O2 consumption and CO2 production (Oxycon-β), from which EE was
derived [128]. V O2max was determined during an incremental test on a cycle er-
gometer [78]. Activity composites were manually annotated by the participants
on a diary, while activity primitives were annotated during laboratory protocols
by the experimenter. The dataset acquired contains about 363 days of data col-
lected from 34 subjects in free living, including accelerometer, ECG and GPS data
plus 72 hours of laboratory recordings including reference V O2 and V CO2 for
validation of EE estimation.

8.4.2 Experimental design and validation procedure

We collected data in free living and laboratory settings. Free living data was used
to learn the normalization parameter HRnp using the proposed method, which
combines activity primitives and relevant activity composites to contextualize HR.
The proposed approach is referred to as combined. Then, activity-specific EE esti-
mation models including normalized HR as a predictor were validated in labora-
tory settings using reference calorimeter data.

We evaluated the proposed approach in estimating HRnp against two other
approaches: a) no-context: HR in free living is used directly to estimate HRnp, b)
low level: HR in free living is contextualized using activity primitives and walking
speed and used to estimate HRnp.

EE estimation using HR normalized by the proposed approach was also eval-
uated against two other approaches: a) no-normalization: EE was estimated by
activity-specific models using as predictors non-normalized HR, accelerometer
and anthropometrics data, b) low level: EE was estimated by activity-specific mod-
els using as predictors normalized HR, accelerometer and anthropometrics data.
For the low-level approach HR was normalized by HRnp and HRnp was deter-
mined using activity primitives and walking speed only, but no activity compos-
ites.

Two laboratory protocols were designed and implemented for each participant
on two separate days to avoid the maximal fitness test to affect physiological pa-
rameters during less intense activities and vice versa.

8.4.2.1 Laboratory protocols

Participants reported at the lab on three separate days and after refraining from
drinking, eating and smoking in the two hours before the experiment. Two lab-
oratory protocols were performed. The first protocol included simulated activity
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primitives performed while wearing a portable indirect calorimeter, to acquire ref-
erence EE data. Activities included: lying down, sitting, sit and write, standing,
cleaning a table, sweeping the floor, walking (treadmill flat at 2.5, 3, 3.5, 4, 4.5,
5, 5.5, 6 km/h) and running (treadmill flat at 7, 8, 9, 10 km/h). Activities were
carried out for a period of at least 4 minutes. The second protocol was a V O2max
test providing reference data for biking and EE while biking. The third day was
used for anthropometric measurements including the participant’s body weight,
height and body fat. Body fat was assessed using doubly labelled water [131].

8.4.2.2 Free living protocol

Participants worn the ECG necklace for 14 consecutive days in free living and
manually annotated their activities composites (high level activities such as go-
ing to work, sleeping, etc.). Participants carried a Samsung S3 phone and were
instructed to charge both the ECG Necklace and phone and to change electrodes
daily.

8.4.2.3 Statistics and performance measures

Models were validated using leave one participant out cross-validation. The pro-
cedure was repeated for each participant and results were averaged. Thus, data
used for model building was not used for model validation. LDA parameters
were derived on data from each participant to be validated, since no reference
or training set are necessary. Performance of the activity recognition models was
evaluated using the class-normalized accuracy. Results for HR normalization pa-
rameters estimation, walking speed estimation and EE estimation are reported in
terms of Root-mean-square error (RMSE), where the outcome variables were HR
in bpm, speed in km/h and EE in kcal/min respectively.

8.5 Implementation

8.5.1 Features extraction and selection

Accelerometer data were segmented in 5 s windows, band-pass filtered between
0.1 and 10 Hz, to isolate the dynamic component due to body motion, and low-
pass filtered at 1 Hz, to isolate the static component, due to gravity. Features
Xaccwere derived and selected based our previous work [9], using a different
dataset. Selected features were: mean of the absolute signal, inter-quartile range, me-
dian, variance, standard deviation, main frequency peak, low and high frequency band
signal power. HR was extracted from RR intervals, computed over 15 seconds.

8.5.2 Activity primitives

Laboratory activities were grouped into six clusters ci to be used for classification
of activity primitives. The six clusters were lying (lying down), sedentary (sitting,
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sit and write, standing), dynamic (cleaning the table, sweeping the floor), walk-
ing, biking and running. Activity primitives were derived combining a SVM and
HMM. For the SVMs, we used a gaussian radial basis kernel (C = 1). The HMM is
defined by parameters λ = (π,A,B). π is the vector of probabilities of each state
(i.e. low level atomic activity) to be the initial state, A is the transition probability
matrix, defining the probability of transitioning between one activity to the other
at time interval t. Thus, the HMM states correspond to activity primitives. B is
the emission matrix, which defines the probability of getting an emission at time
t, given the state. We implemented the emission matrixB as bij = 0.5 ⇐⇒ i = j,
bij = 0.1 ⇐⇒ i 6= j, while transitions probabilities A between actual states
were derived from training data. Training data was the SVM classification result
obtained with reference activity primitives manually annotated in laboratory set-
tings.

8.5.3 Walking speed

Features for the linear regression model used to estimate walking speed were:
mean of the absolute signal, inter-quartile range, variance, main frequency peak, high fre-
quency band signal power and height, as derived by linear forward selection [10].
Free living walking speeds used to contextualize HR were 4.5 km/h (4 to 5 km/h

Figure 8.7: Exemplary stay regions detection from noisy GPS data for one par-
ticipant. Small dots represent all recorded GPS data points, while bigger dots
represent detected stay regions.

range) and 5.5 km/h (5 to 6 km/h range) since speeds close to this values were
reported in healthy individuals (5.3 km/h in [36] and 5± 0.8 km/h in [89]).
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8.5.4 Stay regions

Stay regions were computed from GPS data Xcooaccording to time and distance
thresholds, which were set to 60 minutes and 1 km according to previous litera-
ture [135]. The time threshold ensures that each stay region is a location where
the participants spent a substantial amount of time, while the distance threshold
ensures that noisy recordings do not result into a multitude of stay regions be-
ing detected. GPS data was collected at 5 minutes intervals to conserve battery
power. The relatively wide distance and time thresholds were chosen due to the
low frequency of the GPS recordings. An example of stay region detection for one
participant is shown in Fig. 8.7.

8.5.5 Relevant activity composites discovery

Input primitives for LDA were occurrences histograms of stay regions and activ-
ity primitives in time windows s. LDA hyperparameter α was set to 0.01, while
segment size and number of activity composites K were set to 15 minutes and
20 topics respectively, based on results obtained in previous research [112]. Pa-
rameters were optimized using an implementation of the variational expectation-
maximization algorithm proposed in [27]. The function f (see Fig. 9.4) translates
LDA-derived activity composites into relevant activity composites by first determin-
ing the most probable activity composites in each time window s, as expressed
by the parameter θ. Secondly, HR during activity composites HRctx was ranked
according to features T , including amount of time spent in each activity composite,
amount of time spent in each activity primitive with respect to the total time spent per-
forming the activity and percentage of time spent in each activity primitive per activity
composite. Features were chosen to be computed across participants and activity
composites regardless of the participant lifestyle or activity composite semantics,
while possibly providing information about which activity composite might re-
tain more of the relation between HR and HRnp. Ranking of HRctx values was
smoothed by a moving average of 5 elements. Ranked and smoothedHRctx were
correlated withHRnp to determine which activity composites features were more
representative of HRnp.

8.5.6 HR normalization parameter estimation

We chose the HR while running at 9 km/h as the HR normalization parameter
HRnp to estimate in free living. Our choice was motivated by previous laboratory
results reported by our group [10] as well as others [118], showing that HR nor-
malized by the HR while running at 9 km/h highly reduces variability between
participants. A linear regression model was built to predict HRnp using as inde-
pendent variable the HR while walking at 4.5 km/h or 5.5 km/h during relevant
activity composites, HRctx∗. We also implemented the models listed in Sec. 9.4 as
benchmarks for the proposed approach (referred to as combined).
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8.5.7 Personalized EE estimation

EE was estimated by first classifying the activity performed among the ones listed
in Sec. 9.5.1.2 and then applying an activity-specific EE linear regression model.
The activity-specific EE linear models used anthropometric characteristics, mo-
tion intensity and HR as predictors. For the proposed approach, HR was normal-
ized by the HR normalization parameterHRnp, as estimated using HR contextual-
ized by activity primitive and relevant activity composites. We also implemented the
models listed in Sec. 9.4 as comparisons for the proposed approach, thus estimat-
ing EE using non-normalized HR (no-normalization) and HRnp estimated using
HR contextualized by activity primitive only (low level).

Figure 8.8: Exemplary walking speed estimation and activity primitives recog-
nition for one participant. Activities were manually annotated and performed
sequentially. Improvements in activity primitives recognition using a combined
SVM-HMM compared to a single SVM are shown in plots b and c.
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Figure 8.9: a) RMSE for walking speed models across the speed range used to
contextualize HR in free living. b) Percentage error across the same speeds.

8.6 Results

8.6.1 Activity primitives and speed

Accuracy of the SVM-HMM activity recognition classifier was 92.3%. More specif-
ically, the accuracy was 94.4% for lying, 96.7% for sedentary, 77.6% for dynamic,
96.3% for walking, 93.3% for biking and 95.5% for running. Walking speed esti-
mation RMSE was 0.38 km/h. Results for walking speed estimation across the
speeds used to contextualize HR in free living are shown in Fig. 8.9, while an ex-
emplary output of the activity primitives recognition classifier and walking speed
estimation model is shown in Fig. 8.8.

8.6.2 HR normalization parameter

An example of LDA-derived activity composites is shown in Fig. 8.6. Activities
composites were ranked according to the features listed in Sec. 8.5.5. The feature
Ti maximizing the relation betweenHRnp and rankedHRctx was total time spent
in each activity composite, resulting in correlation r = 0.73. Correlation between
HRnp and mean HR in free living (no-context) was r = 0.46 while correlation
between HRnp and mean HR while walking in free living (low level) was r = 0.53
for walking at 4.5 km/h and r = 0.55 for walking at 5.5 km/h. HRnp estimation
resulted in RMSE of 13.8 bpm for no-context, 13.2 bpm for low level when data
while walking at 4.5 km/h was used, and 12.6 bpm for low level when data while
walking at 5.5 km/h was used. For the proposed approach (combined), RMSE
was reduced to 11.1 bpm and 10.1 bpm when using data while walking at 4.5
km/h and 5.5 km/h respectively. Thus, the proposed approach provided 29.4%
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and 19.8% error reduction in estimated HR compared to no-context and low level.
Including data while walking at higher speed (i.e. 5.5 km/h) provided the best
results. Fig. 8.10 shows the relation between measured and predicted HRnp for
the different cases considered in this work.

8.6.3 EE estimation

EE estimation results are shown in Fig. 8.11. Benchmark for this analysis were
state of the art activity-specific EE estimation models including accelerometer and
non-normalized HR data, (no-normalization), resulting in RMSE of 0.84 kcal/min.
RMSE was reduced from the no-normalization condition to 0.79 kcal/min (6.4% er-
ror reduction) for low level and to 0.75 kcal/min (10.7% error reduction compared
to no-normalization, p = 0.007 and 4.6% error reduction compared to low level,
p = 0.037 ) for combined, the proposed approach. We provide detailed results
for moderate to vigorous activities only, since personalizing the relation between
HR and EE is mostly not useful during sedentary activities [13]. EE RMSE was
reduced from 0.55 kcal/min to 0.53 kcal/min for walking (4.2% error reduction),
from 2.34 kcal/min to 1.92 kcal/min for biking (18.0% error reduction) and from
1.12 kcal/min to 1.03 kcal/min for running (8.0% error reduction) using the pro-
posed approach, compared to no-normalization.

8.7 Discussion

In this paper, we proposed an approach to estimate HR normalization parameters
during free living. Then, we used the normalization parameters to normalize HR
and reduce EE estimation error compared to population-based models obtained
in laboratory conditions. The effectiveness of HR normalization parameters in re-
ducing EE estimation error has been shown in previous literature [10, 13, 118].
However, to the best of our knowledge, this is the first work which estimates
person-specific HR normalization parameters using unsupervised recordings in
free living.

The presence of a multitude of stressors in free living required a different so-
lution from what was introduced in laboratory settings. Our hypothesis was that
HR in free living is not only affected by low level activity primitives - as shown in
the lab - but by both activity primitives and high level activities composites. Thus,
incorporating contextual information beyond activity primitives could potentially
improve interpretation of HR in free living. Our results confirm the importance
of activity composites in interpreting HR data in free living. HR normalization
parameter estimation RMSE was reduced by 29.4% compared to average free liv-
ing HR - i.e. no context - when using the HR while walking at 5.5 km/h during
relevant activity composites as predictor. On the other hand, when HR normaliza-
tion parameters were estimated using low level context information only, i.e. the
HR while walking at 5.5 km/h across all activity composites, RMSE was reduced
by 8.7% only compared to no context. We evaluated the proposed approach for
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Figure 8.10: a,c,e) Relation between measured and estimated HR normalization
parameters for the three conditions compared in this work: a) no-context, c) low
level, e) combined. b,d,f) Residuals plots for the three conditions compared in this
work: b) no-context, d) low level, f) combined. For low level and combined, only
data while walking at 5.5 km/h was used, as it provided the optimal results (see
Sec. 8.6.2).
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Figure 8.11: EE estimation RMSE and standard errors for a) all activities aver-
aged, b) walking c) running and d) biking. Three models are compared, No-
normalization, Low Level: HR was normalized using a normalization factor pre-
dicted from HR while walking at 5.5 km/h, and Combined, i.e. the proposed ap-
proach, normalizing HR using a normalization factor predicted from HR while
walking at 5.5 km/h during relevant activity composites.

a wide range of walking speeds, from 4 to 6 km/h, and found that higher speeds
resulted in better results.

We translated the need for high level contextual information into a recognition
framework and introduced the concept of relevant activity composites. Relevant ac-
tivity composites are activity composites in which HR is more representative for
HR normalization parameters. While supervised methods have been introduced
in literature to determine high level activity composites, these methods require
to know in advance what high level activity composites will be performed by the
participants, as well as sufficiently annotated data to train models. Most impor-
tantly, supervised methods assume every participant to perform the same activity
composites, which is unlikely in free living. Our unsupervised approach relies on
TM, in particular LDA, to discover activity composites. To determine which activ-
ity composites will be used to estimate HR normalization parameters, our method
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ranks activity composites depending on different features. Our approach thus dis-
covers activity composites, which may differ for each participant, depending on
their lifestyle. However, discovered activity composites do not provide semantics
and comparison between participants is challenging. Typically, activity composite
of interest are isolated and further classified using supervised methods [72, 112],
thus requiring prior knowledge of the activity composites to discover, effectively
limiting the unsupervised nature of the method. Ranking allowed for comparison
of activity composite specific features (e.g. total time spent in each activity com-
posite) across participants, even if activity composites were different and without
semantics. Thus, making the relevant activity composite discovery approach unsu-
pervised and generalizable to new participants. In particular, we found a strong
relation between the total time spent in each activity composite and the HR nor-
malization parameter. A possible explanation is that activity composites in which
people spend most of their time are typically representative of a stable physiolog-
ical condition, which might be more representative of their fitness level. On the
contrary, infrequent or more intense activity composites might involve more phys-
iologically stressful situations as well as intermittent HR, causing cardiovascular
responses which are not reliable for HR interpretation [101]. While our method
determines activities which are best suited for HR normalization, the role of other
factors affecting HR, for example emotional stress or illness, could not be directly
evaluated, due to lack of reference. Future work could explore the relation be-
tween relative activity composites and external factors such as stress, to further
validate the effectiveness of the proposed approach in determining high level con-
text useful for EE estimation.

Free living recordings were used to determine HR normalization parameters
unsupervisedly and without requiring any individual calibration or laboratory
tests. However, the effectiveness of the estimated HR normalization parameters
in reducing EE estimation error were validated in laboratory settings. Double la-
belled water (DLW) is the only recognized method to obtain reference EE in free-
living [31, 117]. However, DLW reports only total EE after a period of one or two
weeks. Thus, DLW is not informative in terms of minute-by-minute EE estimation
accuracy. An EE estimation model that would consistently overestime light ac-
tivities and consistently underestimae intense activities could perform optimally
according to DLW, due to an averaging of multiple errors. Thus, we validated our
approach using laboratory data and reference indirect calorimetry, since only un-
der these conditions we can acquire minute-by-minute EE reference for different
activities, and evaluate the models’ accuracy. Similarly, we could evaluate activity
recognition and walking speed models only under laboratory conditions, where
reference is present. The dynamic activity cluster was recognized with accuracy
below average. We interpret that activities with high variability in movement and
execution between participants and using a single chest-worn sensor resulted in
higher classifier confusions. However, the high accuracy of walking speed esti-
mation models and activity recognition for walking provide confidence for the
free-living detection of activities used to contextualize HR.

We believe our approach is a substantial step towards personalized health and
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wellbeing monitoring. The proposed system learns automatically from the user
over time, collecting accelerometer, HR and GPS data while performing activi-
ties of daily living unsupervisedly. Recent developments in wearable and mobile
technology provided sensors and phones able to collect and process data continu-
ously and unobtrusively [12]. Our methodology, could be applied to such systems
to determine the HR normalization parameter, a coefficient representative of the
fitness level of an individual. By normalizing HR using the estimated HR nor-
malization parameter, EE estimation can be personalized. Our results show that
RMSE was reduced by 10.7% on a dataset of participants with high variability in
fitness level, using cross-validation.

We expect that the HR normalization approach will be most useful to individ-
uals willing to take up a more active lifestyle, or undergoing a physical activity
intervention targeted in modifying behavior to increase level of activity. The im-
portance of CRF and its influence on HR is particularly relevant for individuals
transitioning from inactive to active lifestyle. HR normalization provides optimal
results for moderate to vigorous activities, especially the ones where accelerom-
eter data is not indicative of EE due to lack of whole body movement (as shown
by the highest reduction in RMSE for EE estimation when biking, 18.0%). Other
activities such as rowing, walking uphill, etc. would most likely benefit as well,
due to the inability of accelerometers alone to estimate EE accurately. The pro-
posed EE estimation approach will be useful for sports training devices, where
users and trainers are interested in accurate EE estimation under moderate to vig-
orous workloads. However, using low intensities activities, such as walking at
preferred speeds in healthy individuals [36] , [89] we aim at providing accurate
EE estimation in daily life across the general population. The proposed algorithms
can adapt to individual fitness level and high level activity composites. The pro-
posed approach could be used to guide in healthy lifestyle, by providing more
accurate EE estimation at the individual level.
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Abstract

We propose a method to estimate cardiorespiratory fitness (CRF) in free living using wear-
able sensor data. Our method uses three estimation steps and does not require laboratory
tests, calibration or specific exercise. Initially, we recognize activity primitives using ac-
celerometer and GPS data. Using topic models (TMs), we group activity primitives and
derive activities composites. We subsequently rank activity composites, and analyze the
relation between ranked activity composites and CRF across individuals. Finally, heart
rate (HR) data in specific activity primitives and composites is used as predictor in a hi-
erarchical Bayesian regression model to estimate CRF level from the participant’s habitual
behavior in free living. We show that combining activity primitives and activity compos-
ites outperforms other CRF estimation models reducing estimation error between 10.3%
and 22.6% on a study population of 46 participants with varying CRF level.

9.1 Introduction

Cardiorespiratory fitness (CRF) is the ability of the circulatory and respiratory
systems to supply oxygen during sustained physical activity and is considered
among the most important determinants of health and wellbeing. CRF is not only
an objective measure of habitual physical activity (PA), but also a useful diag-
nostic and prognostic health indicator for patients in clinical settings, as well as
healthy individuals [81]. Epidemiological research has shown that in both indi-
viduals affected by disease [119] and healthy individuals [127, 25] higher level
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of CRF resulted in better outcomes in term of slower disease progression, lower
risk of cardiovascular disease as well as lower risk of all cause mortality. Thus,
knowledge of CRF can be key in managing a healthy lifestyle.

Wearable sensors have great potential for accurate PA monitoring in daily life
[39, 44]. However, almost all solutions to monitor PA focus on behavioral aspects
such as steps, activity type and energy expenditure (EE) [33, 125]. While activity
type, EE, steps, etc. are important, they reflect only individual behavior, but do
not provide insights on the individual’s actual health status. CRF is a marker of
cardiovascular and cardiorespiratory health, and therefore is a key health param-
eter [81, 99, 111]. Current practice for CRF measurement is direct measurement of
oxygen volume (V O2 in ml/min) during maximal exercise (i.e.V O2max), the gold
standard. Typically, V O2max tests consist in measuring V O2 using an indirect
calorimeter during an incremental exercise test, either on a bike or treadmill.

However, V O2max tests are affected by multiple limitations. Medical supervi-
sion is required and the test can be risky for individuals in non-optimal healthy
conditions. Less risky submaximal tests have also been developed [18] too. Sub-
maximal tests to estimate CRF typically require measuring heart rate (HR) while
running at a certain speed or biking at a certain intensity. The inverse relation
between HR at a certain exercise intensity, fixed by the strict exercise protocol that
has to be sustained, and fitness, is the rationale behind this approach. The need for
laboratory equipment and the necessity to re-perform the test to detect changes
in CRF limit practical applicability of submaximal tests.

In this work, we propose a method to estimate CRF using wearable sensor data
acquired in free living. We rely on the inverse relation between HR and fitness,
but without the need for laboratory tests or specific exercise protocols. We aim at
using machine learning techniques to determine contexts in which HR can be in-
terpreted usupervisedely in free living. Our hypothesis is that physiological data,
for example HR, in free living settings is not only affected by activity primitives
such as walking, but by a combination of activity primitives and more abstract
activity composites such as social interactions, working, etc. Thus, we propose
a method to determine both low level activity primitives and high level activity
composites, to contextualize HR. Finally, we use contextualized HR to estimate
CRF in a hierarchical Bayesian model. By using a non-nested hierarchical Bayesian
model, parameters can vary depending on the activity performed, therefore be-
ing more flexible than models requiring specific activities. This paper provides
the following contributions:

1. We propose a context recognition framework to contextualize HR and es-
timate CRF based on contextualized HR in free living. First, we use topic
models (TMs) to derive activity composites. Secondly, we rank activity com-
posites to determine which activity composites are best suited for CRF esti-
mation. Finally, we use HR data in specific contexts (i.e. activity primitives,
walking speeds and activities composites) as a predictor in a hierarchical
Bayesian model to estimate CRF.

2. We show the effectiveness of the proposed approach to estimate CRF on a
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dataset including 14 days of unsupervised free living recordings from 46
participants and reference V O2max acquired in laboratory conditions. CRF
estimation error was reduced between 10.3% and 22.6% compared to alter-
native methods.

9.2 Related work

9.2.1 Maximal and Submaximal Tests

V O2max is regarded as the most precise method for determining CRF [124]. De-
spite the indubitable importance of CRF in health, measurements of V O2max
are rare since they require specialized personnel and expensive equipment. The
high motivation demand and exertion of the subjects makes the test unfeasible
in many patients groups [94]. As an alternative, many non-excercise and sub-
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Figure 9.1: Relation between body weight, HR and CRF for participants with sim-
ilar body size (weight and height) characteristics. a) Positive relation between
V O2max and body weight disappears when participants with similar body size
characteristics are considered. b) Negative relation between V O2max and HR
while walking holds on a subset of participants with similar body size, and can
potentially be used to discriminate CRF levels.

maximal models have been developed. Non-exercise models of CRF use easily
accessible characteristics such as age, gender and self-reported PA level [73, 93].
However, for individuals with similar characteristics, CRF levels cannot be dis-
criminated, as shown in Fig. 9.1. Submaximal tests have been developed to esti-
mate V O2max during specific protocols while monitoring HR at predefined work-
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loads [18]. Contextualized HR, e.g. HR while performing a specific activity in
laboratory settings, is discriminative of CRF levels between individuals with sim-
ilar characteristics, due to the inverse relation between HR and CRF [100] (see
Fig. 9.1). Commercial devices, for example some sport watches paired to HR mon-
itors [55, 53], provide CRF estimation using this principle, i.e. using a regression
model including HR at a predefined running speed as predictor. However, sub-
maximal tests are still affected by limitations; the test should be re-performed ev-
ery time CRF needs to be assessed, often requires laboratory infrastructure and
specific activities to be performed [106].

9.2.2 CRF estimation in free living

EstimatingV O2max from parameters derived using wearable sensor data acquired
in free living can potentially be applied to a larger population, compared to max-
imal or submaximal laboratory tests. Preliminary work explored the relation be-
tween PA level as expressed by a step counter, and CRF [40]. While PA level can
provide useful insights, the relation between HR and oxygen uptake at a certain
exercise intensity cannot be exploited using motion based sensors. Plasqui et al.
[100] showed that a combination of average HR and activity level over a period
of seven days correlates significantly with V O2max. However, the relation be-
tween average HR and activity counts depends on the amount of activity per-
formed [100]. Tonis et al. [120] explored different parameters to estimate CRF
from HR and accelerometer data during activities of daily living simulated in
laboratory settings. However V O2max reference and free living data were not
collected. When moving towards free-living settings, HR is more difficult to in-

0.00

0.02

0.04

0.06

60 80 100 120
HR − bpm

D
en

si
ty

ActivityComposite

cleaning

social

work

Figure 9.2: Density plot of HR data during the activity primitive sedentary, occur-
ring in different activity composites, i.e. cleaning, social, work. Although the activity
primitive sedentary occurs in all activity composites, HR differs consistently across
activity composites. Thus, detecting activity composites can improve interpreta-
tion of HR in free living, and therefore provide more accurate CRF estimation.
Activities composites were manually annotated.

terpret, since activities vary depending on the different lifestyles people adopt.
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9.2.3 Context recognition

We hypothesize that HR in free living settings is not only affected by activity prim-
itives but by a combination of activity primitives and more abstract activity com-
posites. For example, HR during the activity primitive sedentary changes substan-
tially depending on the context in which such activity is performed. HR during
social interactions is higher than during work for sedentary activities, possibly
due to the higher physiological stress involved in talking and interacting with
other persons, as shown in Fig. 9.2. Thus, CRF estimation models might benefit
from inclusion of activity composites, which are representative of the presence of
a multitude of stressors present in free living.

Typically, activities are thought of in a hierarchical manner, starting from low
level activity primitives, to more abstract activity composites [16]. An example
of activity primitives can be a set of postures and locomotion activities, such as:
lying down, sedentary, dynamic, walking, biking and running, as determined using
supervised methods in previous research [20]. On the contrary, higher level con-
textual information, such as activity composites, require a different recognition
approach. Such activities are personal and need unsupervised methods able to
discover different patterns in each individual, depending on their behavior. A
possible solution is the use of TMs [27]. In activity recognition, TMs were applied
to discover activity composites from activity primitives [72]. Recent work investi-
gated the impact of multiple TMs (in particular LDA, latent Dirichlet allocation)
parameters for activity composites discovery, showing promising results [112] for
recognition of abstract high level activities.

In our previous work [5], we proposed a method to determine which activ-
ity composites are better suited to interpret HR for one individual. For example,
we determined in which activity composites HR was more representative of HR
normalization parameters used to personalize EE estimates. Our approach con-
sisted of ranking activity composites based on features in order to compare them
across participants. In this work, we extend our method to the relation between
HR during activity composites and V O2max. We aim at finding for each individ-
ual specific contexts where HR is representative of CRF in free living, using an
unsupervised approach. Then, we use contextualized HR to predict CRF without
the need for laboratory tests or specific exercises.

9.3 Approach

Following a top down approach, CRF yCRF was estimated from contextualized
HR HRctx∗ and anthropometric characteristics by a hierarchical Bayesian regres-
sion model, as shown in Fig. 9.3. Contextualized HR HRctx∗ refers to HR during
specific activity primitives, speeds and relevant activity composites. We used fea-
tures from accelerometer Xacc, HR Xhr, location Xcoo and anthropometrics Xant

as input to our context recognition and CRF estimation models. Activity primi-
tives c were used together with stay regions sr as input for LDA topic discovery
to obtain activity composites. Activity composites were ranked to find the most
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relevant ones for CRF estimation, referred to as relevant activity composites (see Sec.
9.3.3 for details). The procedure to determine activity primitives, speeds, activity
composites, and therefore contextualized HR HRctx∗ is shown in Fig. 9.4.

In the remaining of this section, we detail the approach and provide an exam-
ple. We consider walking at 3 and 5 km/h as exemplary activity primitives and
speeds. Thus, to determine contextualized HR, we consider HR data while walk-
ing at 3 and 5 km/h during relevant activity composites.

9.3.1 CRF estimation

The CRF estimation yCRF was derived by a hierarchal Bayesian regression model.
Parameters modeling the relations betweenHRctx∗ and yCRF vary depending on
the context ctx. We denote the estimation model as:

yCRFp
∼ N(XCRFp

βCRF +Xctx[p]βctx[p], σ
2
CRF ), (9.1)

ctx = 1, . . . , R p = 1, . . . , np

XCRFp
= [1, Xantp ] ∈ Rnp×(D+1), p = 1, . . . , np

Xctx = [HRctx∗] ∈ Rnp×1 p = 1, . . . , np

where matrix XCRFp
is of dimension np × (D + 1). np is the number of partici-

pants, whileD the number of anthropometric characteristicsXantp for a person p,
which includes body weight, height, age and sex. The associated parameters βCRF
do not vary by context ctx since they are relative to a person and remain the same
across different activities. Contexts ctx are a set R representing a combination of
activity primitives and speeds during relevant and activity composites, as shown in
Fig. 9.3. In our example, contexts are R = 2, i.e. walking at 3 or 5 km/h dur-
ing relevant activity composites, and control the parameters βctx for the predictor
HRctx∗. By letting the parameters βctx vary, users are not constrained to one spe-
cific activity. Instead, the model will provide a CRF estimate yCRF depending
on the available activity primitives and speeds. Details on the model parameters
estimation procedure are reported in Sec. 9.5. For validation purposes, we used
leave one participant out cross-validation, therefore building a model for np − 1
participants, and then evaluating in on the remaining one. The procedure was
repeated np times, as further detailed in Sec. 9.4.

9.3.2 Context recognition

In this section we introduce our context recognition architecture to determine con-
textualized HRHRctx∗, as shown in Fig. 9.4. Activity composites were discovered
using LDA. LDA is a generative probabilistic model which discovers K activity
composites, from S time windows of N words yn. For activity recognition, words
yn are typically basic building blocks for higher level activities, such as low level
atomic activities. In our implementation we used stay regions and activity prim-
itives (see Sec. 9.5) as words yn. Accelerometer features Xacc were used to de-
rive activity primitives ci combining a Support Vector Machines (SVM) classifier
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Figure 9.3: Hierarchical Bayesian model in plate notation. Parameters βctx vary by
context ctx and model the relation between contextualized HR HRctx∗ and CRF
yCRF .

Figure 9.4: Proposed approach to determine contextualized HR HRctx∗. LDA
uses histograms of activity primitives c and stay regions sr to discover a set of ac-
tivity composites, which are ranked to determine relevant activity composites. Con-
textualized HRHRctx∗ is shown in the top block, and is determined by combining
activity primitives, activity composites and speed. HRctx∗ is used as input for the
CRF estimation model detailed in Fig. 9.3.

and subsequent Hidden Markov Models (HMM) used to smooth transitions be-
tween activities. The hidden states corresponded to the real activity composites,
ci, while the observable states are the ones recognized by the SVM. Stay regions
were derived from GPS coordinates Xcoo using time and distance thresholds (see
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Sec. 9.5). According to the generative process, for each word yn, we first draw the
activity composite zn. zn is a scalar z ∈ 1 : K indicating the activity composite for
time window n. Each assigned activity composite zn is derived from a multino-
mial distribution defined by the parameter θs. θs is the distribution over activity
composites for time window s:

θs ∼ Dir(α) 1 ≤ s ≤ S (9.2)

zn ∼Mult(θs) 1 ≤ s ≤ S, 1 ≤ n ≤ N (9.3)

LDA defines θs as a Dirichlet distribution with hyperparameter α. Then, an-
other multinomial is used to choose a word yn, conditioned on the activity com-
posite zn, p(yn|zn):

yn ∼Mult(βzn) 1 ≤ n ≤ N (9.4)

Where β is defined as the probability of each word n ∈ 1 : N for topic z. The
joint distribution can be specified as:

p(y, z, θ, φ|α, β) =

S∏
s=1

∫
p(θs, α)

N∏
n=1

K∑
z=1

p(zsn|θs)p(ysn|zsn, β)dθs (9.5)

We were interested in estimating the distributions of the parameter θs. Multi-
ple activity composites were derived by LDA in each time window s, each activ-
ity composite being assigned a probability. For each time window we considered
only the activity composite maximizing θs, indicated hereafter as zs, the window’s
main activity composite.

9.3.3 Relevant activity composites

During the training phase, the HR for activity primitives and speeds was com-
puted for each main activity composite zs and participant par. Accelerometer
features Xacc were used to estimate walking speed as yspeed = Xspeedβspeed +
ε,Xspeed = {Xacc, Xant}. The resulting matrix HRctx is of dimension K × npar,
where K is the number of activity composites and npar is the number of par-
ticipants. LDA-derived activity composites do not include semantics and cannot
be compared across participants. To overcome the problem of comparing activ-
ity composites, we characterized them with a set of features T which we used to
rank activity composites, as in [5]. In order to provide a generalized method that
is applicable to new participants, we chose features T that are independent of a
person’s lifestyle, for example, T1 ∈ T could be the relative time spent sedentary in
each activity composite for the different participants. Regardless of what a person’s
lifestyle is, it will always be possible to order LDA-derived activity composites by
featureT1, e.g. the relative time spent sedentary in each activity composite. Then,HRctx
was ranked by feature T1, providing a way to investigate the relation between the
HR in different activity composites and CRF, across participants. The ranking
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orders HRctx by values of T1 from maximum to minimum. Since we are inter-
ested in highlighting commonalities across activities composites, ranked HRctx
are smoothed by a moving average, resulting in HRctx. As a result, we obtain an
array of k ranked HR values per participant. We conclude the training phase by
determining which feature in T maximizes Pearson’s correlation between HRctx
and CRF. We define the vector of correlations rT for a set of TN features in a con-
text ctx. Thus, for each context ctx, we have:

rT = {rrankT1
, . . . , rrankTN

}, (9.6)

rranki = r(HRctxpar={1,...,npar},i , CRFpar={1,...,npar}) (9.7)

Where rranki is the correlation between the vector of contextualized HR HRctx
and CRF, among all participants par for a feature Ti in a context ctx. The activity
composite providing the highest correlation was selected, i.e. the first element
of the HRctx vector across individuals and CRF, to determine which feature Ti
results in activity composites most representative of CRF. Thus, the feature Ti =
max rTctx showing the highest correlation between HRctx and CRF is chosen to
determine relevant activities composites.

As an example, we consider as contexts ctx walking at 5 km/h during activity
composites with the maximum relative time spent sedentary, i.e. relevant activity
composites, as shown in Fig. 9.5. We first determine the vector of k elementsHRctx,
representing the mean HR while walking at 5 km/h in each LDA-discovered ac-
tivity composite. Then,HRctx are ranked based on the feature Ti maximizing the
correlation on our training set (i.e. the relative time spent sedentary in each activity
composite), to determine HRctx∗. The first element of the ranked and smoothed
HRctx vector, is the contextualized HRHRctx∗, used as input for CRF estimation.

9.4 Evaluation study

9.4.1 Participants and data acquisition

Participants were 46 (21 male, 25 female) self-reported healthy individuals, age
24.7 ± 4.9 years, weight 68.6 ± 10.9 kg, height 172.8 ± 8.9 cm, BMI 22.9 ± 2.5
kg/m2 and V O2max 3020.8 ± 668.9 ml/min. Written informed consent was ob-
tained, and the study was approved by the ethics committee of Maastricht Uni-
versity. The sensor platform used was an ECG Necklace, a platform configured
to acquire one lead ECG data at 256 Hz, and three-axial accelerometer data at
32 Hz. The ECG Necklace was worn on the chest, close to the body’s center of
mass. The ECG Necklace was worn during laboratory protocols and free living.
A Continuous Wavelet Transform based beat detection algorithm was used to ex-
tract R-R intervals from ECG data recorded under laboratory conditions, which
output was manually examined to correct for missed beats that might be caused
by motion artifacts [102]. For ECG data recorded under unsupervised free-living
conditions, we selected high quality data by discarding periods in which more
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Figure 9.5: Exemplary diagram of the procedure to determine contextualized HR
HRctx∗. Plots show 24 hours of free living data for one participant. For this illus-
tration, we selected as activity primitive and speed walking at 5 km/h during relevant
activity composites, and highlighted them in red. a) Recognized activity primitives,
as detected by the combined SVM and HMM classifier. b) Walking speed ys, de-
termined when walking is detected, using a linear regression model. c) Activity
composites determined by LDA and defined by the distribution of activity primi-
tives and stay regions over 15 minutes windows. Relevant activity composites are
determined using the procedure detailed in Sec. 9.3.3, maximizing the correlation
between HR and CRF. d) Contextualized HR HRctx∗ is determined as the mean
HR while walking at 5 km/h during relevant activity composites in this example,
and highlighted in red. HRctx∗ is used to estimate CRF, as shown in Fig. 9.3.
Between 17 and 18 hours no data are present since the sensor was being charged.

than 15% errors were detected in a time window. Errors were defined as consec-
utive RR intervals differing more than 20%, as typically reported in clinical prac-
tice. Additionally, during free living each participant carried a Samsung Galaxy
S3 used to record GPS coordinates at 5 minutes intervals. Reference CRF was de-
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termined as V O2max, by means of an incremental test on a cycle ergometer [78]
using a indirect calorimeter that analyzed O2 consumption and CO2 production.
The dataset considered for this work contains 507 days of data collected from 46
subjects in free living, thus about 11 days per participant, including accelerometer,
ECG and GPS data. 75 hours of laboratory recordings including reference V O2,
V CO2, acceleration, ECG and V O2max were also obtained for model validation.

Figure 9.6: ECG Necklace and Samsung S3, the wearable sensor and phone used
to collect accelerometer ECG and GPS data in this study. The ECG Necklace was
worn during laboratory protocols and free living recordings close to the body’s
center of mass. The Samsung S3 was carried during free living only.

9.4.2 Experimental design and validation procedure

We collected data in free living and laboratory settings and evaluated four ap-
proaches to CRF estimation. All approaches were evaluated with respect to refer-
ence CRF measured by means of a V O2max test carried out on a cycle ergometer.
In the remaining of this paper, we will use the following terminology to charac-
terize the four estimation conditions that were used for comparison; a) anthropo-
metrics: no HR data was used, b) no-context: HR in free living was used directly
to estimate CRF, c) primitives: HR in free living was contextualized using activity
primitives and speed, d) composites: HR in free living was contextualized using
activity primitives, speed and relevant activity composites.

Two laboratory protocols were designed and implemented for each participant
on two separate days to avoid the maximal fitness test to affect physiological pa-
rameters during less intense activities and vice versa. Additionally, each partic-
ipant wore the ECG Necklace in free living for 14 days. All results on CRF esti-
mation were obtained from the free living data, whereas the laboratory data was
used to derive the models, as detailed in the next Sections.

Data from laboratory protocols were used to develop supervised methods for
activity type recognition and walking speed estimation. Activity type recogni-
tion and walking speed estimation models were deployed in free living and used
as building blocks to contextualize HR. Additionally reference V O2max was col-
lected under laboratory protocols to validate the proposed CRF estimation mod-



162
Chapter 9. Cardiorespiratory fitness estimation in free living using wearable

sensors
els. Data collected in free living were used to determine contextualized HR and
use contextualize HR as predictor for CRF estimation. CRF estimation models
including contextualized HR as predictor relied on; laboratory-validated activity
type recognition and walking speed estimation models, stay regions determined
unsupervisedly in free living (see Sec. 9.5) and activity composites determined
using LDA, in free living.

9.4.2.1 Laboratory protocols

Participants reported at the lab on three separate days and after refraining from
drinking, eating and smoking in the two hours before the experiment. Two labo-
ratory protocols were performed. The first protocol included simulated activities
performed while wearing a portable indirect calorimeter. Activities included: ly-
ing down, sitting, sit and write, standing, cleaning a table, sweeping the floor,
walking (treadmill flat at 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 km/h) and running (treadmill
flat at 7, 8, 9, 10 km/h). Activities were carried out for a period of at least 4 min-
utes. The second protocol was a V O2max test providing reference data for biking
and CRF. The third day was used for anthropometric measurements including
the participant’s body weight, height and body fat assessed using doubly labelled
water [131].

9.4.2.2 Free living protocol

Participants worn the ECG necklace for 14 consecutive days in free living and
manually annotated their activity composites in a paper diary. Participants were
instructed to annotate activity composites as they occurred during the day and to
annotate only high level activities such as going to work, sleeping, commuting,
etc. Annotated activity composites were not used for model development since
activity composites were derived using LDA, and therefore unsupervisedly from
low level activity primitives, as detailed in Sec. 9.3 and Sec. 9.5. The annotations
were only used to interpret the LDA and CRF estimation results as detailed in the
discussion, Sec. 9.7. Activity composites can only be determined from free living
data, since they cannot be simulated under laboratory conditions. Participants
carried a Samsung S3 phone and were instructed to charge both the ECG Necklace
and phone and to change electrodes daily.

9.4.2.3 Statistics and performance measures

All models were derived using leave-one-participant-out cross validation. The
same training set, consisting of data from all participants but one, was used to
build feature selection, activity recognition, walking speed estimation and CRF
estimation models. The remaining data was used for validation. The procedure
was repeated for each participant and results were averaged. LDA models were
built on data from the participant to be validated, since no reference or training
set are necessary. Performance of the activity recognition models was evaluated
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using the class-normalized accuracy, in laboratory recordings. Results for walk-
ing speed estimation and CRF estimation are reported in terms of Root-mean-
square error (RMSE) and Pearson’s correlation (r), where the outcome variables
were speed in km/h and CRF in ml/min respectively. Paired t-tests were used to
compare RMSE between models.

9.5 Implementation

9.5.1 Context recognition

9.5.1.1 Features

Accelerometer data from the three axes were segmented in 5 s windows, band-
pass filtered between 0.1 and 10 Hz, to isolate the dynamic component due to
body motion, and low-pass filtered at 1 Hz, to isolate the static component, due to
gravity. Feature selection for activity type recognition was based on results from
our previous work [9], using a different dataset. Selected features were: mean
of the absolute signal, inter-quartile range, median, variance, main frequency peak, low
frequency band signal power. Accelerometer features for walking speed estimation
were: mean of the absolute signal, inter-quartile range, variance, main frequency peak,
high frequency band signal power. HR was determined from RR intervals extracted
from raw ECG data and averaged over 15 seconds windows. RR intervals were
first correct for artifacts due to noise or ectopic beats, by removing consecutive
intervals differing by more than 20%.

9.5.1.2 Activity primitives

Laboratory activities were grouped into six clusters to be used for classification of
activity primitives. The six clusters were lying (lying down), sedentary (sitting, sit
and write, standing), dynamic (cleaning the table, sweeping the floor), walking, bik-
ing and running. Activity primitives were derived combining a SVM and HMM.
For the SVMs, we used a Gaussian radial basis kernel (cost function parameter C
= 1). Parameters were set based on previous work from our group [6]. The HMM
is defined by parameters λ = (π,A,B); where π are the initial state probabilities,
A is the transition probability matrix, defining the probability of transitioning be-
tween one activity to the other at time interval t. The HMM states corresponded to
activity primitives. B is the emission matrix, which defines the probability of get-
ting an emission at time t, given the state. We implemented the emission matrix
B as bij = 0.5 ⇐⇒ i = j, bij = 0.1 ⇐⇒ i 6= j, while transitions probabili-
ties A between actual states were derived from training data. Training data was
the SVM classification result obtained with reference activity primitives manually
annotated in laboratory settings.
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9.5.1.3 Walking speed

Walking speed was estimated using a multiple regression model using as pre-
dictors the features listed in Sec. 9.5.1.1, together with the participant’s height.
Laboratory recordings on a treadmill while walking at different speeds were used
to build subject-independent walking speed models.

9.5.1.4 Stay regions

Stay regions were computed from GPS coordinates according to time and distance
thresholds, which were set to 60 minutes and 1 km according to previous litera-
ture [135]. The time threshold ensures that each stay region is a location where
the participants spent a significant amount of time, while the distance threshold
ensures that noisy recordings do not result into a multitude of stay regions be-
ing detected. GPS data was collected at 5 minutes intervals to conserve battery
power. The relatively wide distance and time thresholds were chosen due to the
low frequency of the GPS recordings.

9.5.1.5 Relevant activity composites

Input primitives for LDA were occurrences histograms of stay regions and activity
primitives in each time window s. LDA hyperparameter α was set to 0.01, while
segment size and number of topics k were set to 15 minutes and 20 topics re-
spectively, based on results obtained in previous research [112]. Parameters were
optimized using an implementation of the variational expectation-maximization
algorithm proposed in [27]. HR during activities composites HRctx was ranked
according to different features T : amount of time spent in each activity composite,
relative amount of time spent in each low level activity for an activity composite, with
respect to the total time spent in the same low level activity across all activities composites
and relative time spent in each low level atomic activity per activity composite. These
features were chosen since they can be computed across participants and activ-
ities composites regardless of the participant lifestyle or activity composite se-
mantics. Ranked HRctx were correlated with CRF to determine which activities
composites features were more representative of CRF. Ranking of HRctx values
was smoothed by a moving average of 2 elements, i.e. over the first two ranked
activity composites. The relevant activity composites discovery procedure was
also evaluated independently of the participant. Contextualized HR HRctx was
ranked and correlated with CRF for np − 1 participants. The feature resulting as
the most representative of CRF, i.e. the one for which correlation was maximized,
was used to determine relevant activity composites for the left out participant.
The procedure was repeated np times, where np was the number of participants.

9.5.2 CRF estimation

Hierarchical Bayesian models for CRF estimation introduced in Sec. 9.3 were im-
plemented using R and JAGS. Posterior parameters estimations were performed
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Figure 9.7: Correlation between HR and V O2max. Correlation is lowest for No-
context and were highest when activity composites (Composites) were used, com-
pared to the condition were only activity primitives (Primitives) were considered.
HR data during activity primitives and composites was acquired in free living
settings.

by Gibbs sampling with 3 chains and 10000 iterations. The first 500 iterations were
discarded (burn-in period). We consider reference V O2max as CRF. We chose
walking at different speeds as activity primitives normally carried out by most of
the population. We evaluated our V O2max estimation models using as predic-
tor HR contextualized over a broad range of walking speeds, from 2.5 to 6 km/h.
The hierarchical Bayesian model to estimate CRF also included the participant’s
weight, age, sex and height as predictors. We implemented the models listed in
Sec. 9.4 for comparison, thus estimating V O2max using anthropometric charac-
teristics only (case anthropometrics), HR in free living (case no-context), HR while
walking at a certain speed (case primitives), and HR while walking at a certain
speed relevant activity composites (case composites).

9.6 Results

9.6.1 Activity primitives and walking speed

Activity primitives and walking speed were validated in laboratory settings. Class-
normalized accuracy of the SVM-HMM activity recognition classifier was 95.8%.
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More specifically, accuracy was 98.2% for lying, 98.9% for sedentary, 83.5% for dy-
namic, 99.4% for walking, 96.5% for biking and 98.4% for running. Walking speed
estimation RMSE was 0.37 km/h.

9.6.2 Relevant activity composites

Fig. 9.7 shows the absolute value of the correlation between HR and V O2max
for different contexts. HR in free living was moderately correlated with V O2max
(comparison case no-context, r = −0.43). Correlation between HR and V O2max in
free living was stronger for walking activity primitives, compared to no-context,
ranging from −0.55 to −0.63. Correlation had a tendency to increase as speed
increased, reaching the highest value for walking at 6 km/h. Fig. 9.8 shows results
forV O2max estimation models. RMSE between estimated and predictedV O2max
when no HR data was used (case anthropometrics) was 322.5 ml/min. The relation
between contextualized HR HRctx (i.e. including relevant activity composites) and
V O2max was maximized ranking activities composites by feature Ti = relative
time spent sedentary within an activity composite. Correlation ranged between −0.57
and −0.71, reaching the highest value for walking at 6 km/h. Thus, correlation
was consistently improved when a combination of activity primitives and relevant
activity composites was used to contextualized HR, compared to no-context and
activity primitives only, as shown in Fig. 9.7.

9.6.3 CRF estimation

RMSE was reduced to 286.3 ml/min (11.3% error reduction) when including free
living HR as predictor but no contextual information (case no-context). Estimation
error was further reduced for case primitives, i.e. using the HR while walking at
a certain speed as predictors. More specifically, RMSE varied between 287.3 and
267.6 ml/min, depending on walking speed. RMSE was reduced by 17.0% and
6.5% compared to case anthropometrics and no-context respectively, when the best
model was used (i.e. walking at 6 km/h). Contextualizing HR by a combination
of activity primitives and activity composites provided better accuracy than any
other model. RMSE varied between 268.9 ml/min and 249.5 ml/min, depending
on walking speed. A combination of activity primitives and activity composites
always outperformed activity primitives alone, as shown in Fig. 9.8.

Activity primitives in free living were recognized as follows: 44.5% lying, 36.4%
sedentary, 9.5% dynamic, 5.4% walking, 3.8% biking and 0.4% running. The av-
erage walking speed in free living over the entire dataset was 3.5 ± 1.5 km/h.
Participants spent 71 ± 27 minutes per day in walking activities, 7 ± 5.4 minutes
walking at 6 km/h.

Overall, combining activity primitives and activities composites provided er-
ror reductions up to 22.6%, 12.8% and 10.3% compared to anthropometrics, no-
context and primitives respectively. Fig. 9.9 shows estimated and measuredV O2max
for the four models compared in this study. Explained variance (R2) and RMSE
are reported, showing increasedR2 and reduced error as more context is included.
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Figure 9.8: RMSE of CRF estimation in free living against V O2max reference.
Error bars represent standard error. RMSE is highest for Anth, followed by No-
Context, showing that not using HR data or using HR data without context pro-
duces larger errors in V O2max estimation. A combination of activity primitives
and activity composites (condition Composites) shows optimal results, i.e. the low-
est RMSE across different walking speeds, compared to the condition were only
activity primitives (Primitives) were considered. HR data used as predictors was
acquired during activity primitives and composites performed unsupervisedly in
free living settings.

For the latter figure, only the best performing models is shown for cases primitives
and composites.

9.7 Discussion

Many methods have been developed to estimate V O2max using data collected
under supervised laboratory conditions or following strict protocols. However, to
the best of our knowledge, this is the first work, which combines activity primi-
tives and activity composites to include both low and high level contextual infor-
mation when interpreting HR data in free living. We showed RMSE reductions of
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Figure 9.9: Estimated and measured V O2max for the four conditions compared
in this work. R2 is increased and RMSE is reduced when adding more levels of
contexts. The best results when V O2max is estimated using HR contextualized
by activity primitives and composites, as shown in d). HR data used as predictors
was acquired during activity primitives and composites performed unsupervis-
edly in free living settings.

22.6% compared to estimates derived using anthropometric characteristics only,
and RMSE reductions up to 10.3% compared to estimates derived using activity
primitives.

We hypothesized that the presence of a multitude of stressors in free living
required a novel approach over the prior estimation attempts used in laboratory
settings. In particular, HR in free living is not only affected by low level activity
primitives - as shown in the lab - but by both low level activity primitives and high
level activity composites. Thus, incorporating knowledge of contextual informa-
tion beyond activity primitives could potentially improve interpretation of HR
in free living. Our results confirm the importance of activity composites in free
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living. RMSE was consistently reduced over a broad range of walking speeds,
as shown in Fig. 9.8. We translated the need for high level contextual informa-
tion into a hierarchical framework. In our previous work we introduced relevant
activity composites for energy expenditure estimation [5]. We established relevant
activity composites to relate discovered activity composites for which no supervised
information exists, to behaviour-related HR.

In this work, discovered activity composites were ranked according to a cor-
relation of selected features and HR. We could thus determine, which activity
composites are better suited for CRF estimation. Relying on LDA or TMs in gen-
eral provides the advantage of discovering activity composites which are individ-
ual for each participant, depending on their lifestyle. However, discovered activ-
ity composite do not provide semantics and comparison between participants is
challenging. Typically, activity composite of interest are isolated and further clas-
sified using supervised methods [72, 112], thus requiring prior knowledge of the
activity composites to discover, effectively limiting the unsupervised nature of the
method. Ranking allowed for comparison of activity composite specific features
across participants, thus making the approach unsupervised and generalizable to
new participants.

We found a strong relation between the relative time spent sedentary in each activ-
ity composite and CRF. A possible explanation for the relation between HR contex-
tualized by activity composites ranked by relative time spent sedentary in each activ-
ity composite and CRF is that activities composites in which people spend most of
their time sedentary are typically representative of a stable physiological condi-
tion, which might be more representative of their CRF level. On the contrary, short
or infrequent activities might involve more stressful situations as well as more in-
termittent HR, causing cardiovascular responses which are not as reliable for HR
interpretation [101]. An example of an activity composite that maximizes the rel-
ative time spent sedentary is working at the office. While most of the time while
working at the office an individual is probably sedentary, there can still be many
periods of walking, that are therefore used to contextualize HR. In such periods,
HR might be less affected by for example carrying loads, effects of previously per-
formed intense exercise, walking hills, etc.) and therefore be more representative
of CRF.

Sartor et al. [111] recently reviewed over ninety different V O2max estimation
tests. Most of these tests require intense activities and strict protocols, for ex-
ample the most commonly used 2-mile run (R2 = 0.81, [88]) or YMCA protocol
(R2 = 0.56, [110]). Our free living estimation falls on the high end of the reported
R2 for laboratory based submaximal tests, with accuracy close to what is reported
for intense exercise protocols (R2 = 0.76). However, the approach proposed in this
work does not require intense activities, and is therefore suitable on a wider pop-
ulation. Additionally, the proposed approach does not require a specific test or
laboratory infrastructure, and therefore V O2max could be continuously assessed
longitudinally over time, and not only re-assessed when the test is performed.
Other studies investigated the relation between easily accessible measures such
as HR or HR variability at rest and V O2max [55]. However, these studies typi-
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cally reported low levels of accuracy (R2 = 0.29, [55]), showing that single mea-
surements or spot measurements of physiological parameters and limited levels
of context are insufficient for a reliable V O2max estimate. A possible explana-
tion for the better performance of the proposed approach compared to single spot
checks and even some more intense laboratory protocols, is that by contextualiz-
ing HR over multiple days, our proposed approach is less prone to the day-to-day
variability typical of physiological measurements as well as activity behavior.

We relied on the inverse relation between HR at a certain workload andV O2max,
as often reported for laboratory protocols. However, by using a non-nested hier-
archical approach, where parameters varied based on the activities, we did not
constrain the participant in performing specific activities or walking at predefined
speeds. Instead, based on the participant’s preferred walking speed in free living,
the optimal parameters were used. The reason for using as predictor the HR while
walking instead of the HR during other detected activities is that walking is the
highest intensity activity that can be accurately quantified in free living, in terms
of both activity type (i.e. walking) and intensity (i.e. speed). Additionally, walking
is an activity basically everyone performs daily. On our free living dataset, partic-
ipants spent more than an hour per day walking (71±27 minutes), and about 10%
of walking activities involved walking at 6 km/h (7± 5.4 minutes). Thus, walking
confirmed to be a common activity of daily life, and a good candidate to contex-
tualize HR for CRF estimation. Noteworthy, RMSE for V O2max estimation was
not consistently reduced by including in the models HR collected while walking
at higher speeds. Thus, highlighting the additional complexity of analyzing HR
data in free living.

Being able to accurately determine the user context in terms of activity type
and intensity allows us to bring the principle used in laboratory based submax-
imal tests (i.e. the inverse relation between HR measured while performing an
exercise at a certain intensity, such as biking at a fixed power on a cycle ergome-
ter, and V O2max) to free living settings. Contextualizing HR by means of low
level activity primitives and speed improved correlation between free living HR
and CRF. Combining activity primitives and activity composites further improved
correlation. As a result, RMSE for CRF estimation against VO2max reference was
reduced up to 22.6%.

9.8 Conclusion

In this paper, we estimate CRF in free living using data acquired with wearable
sensors and mobile phones. We showed that RMSE for CRF estimation can be re-
duced up to 22.6% by including context. We obtained best results when including
both low level activity primitives and high level activity composites, determined
with a context recognition framework combining both supervised and unsuper-
vised methods. CRF is a strong and independent predictor of all-cause and in
particular cardiovascular mortality. The proposed CRF estimation model could
be used to provide accurate information about an individual’s health without the
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need for laboratory infrastructure or specific tests. New opportunities for appli-
cations targeting behavioral change by creating a feedback loop involving objec-
tively measured PA level, as well as changes in CRF and associated reduced risk
of disease, could be developed building up on the proposed approach.
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Abstract

In this work, we propose to use pattern recognition methods to determine submaximal
heart rate (HR) during specific contexts, such as walking at a certain speed, using wear-
able sensors in free-living. We then use context-specific HR to estimate cardiorespiratory
fitness (CRF) from data acquired in free-living, without the need for laboratory proto-
cols. CRF of 51 participants (24 male, 27 female) was assessed by a maximal exertion test
(V O2max). Participants wore a combined accelerometer and HR monitor during a labo-
ratory based simulation of activities of daily living and for two weeks in free-living. Ac-
celerometer output was processed to determine participants’ activities and walking speeds
and these were used as specific contexts in which HR was analyzed. First, HR while ly-
ing down and walking at predefined speeds in laboratory settings was used together with
anthropometric characteristics in a multiple regression model to estimate CRF. Explained
variance (R2) was 0.64 for anthropometrics only, and increased up to 0.74 for context-
specific HR (0.73 to 0.78 when including fat-free mass). We then developed activity recog-
nition and walking speed estimation algorithms to determine the same contexts (i.e. lying
down and walking at different speeds) in free-living. Context-specific HR in free-living
was highly correlated with measurements obtained during laboratory protocols (Pearson’s
r = 0.71 − 0.75). HR while lying down and walking at predefined speeds in free-living,
as detected by pattern recognition methods, was used together with anthropometric char-
acteristics in a multiple regression model to estimate CRF. R2 for CRF estimation was
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0.65 when anthropometrics data only was used as predictors, and increased up to 0.77
when including free-living context-specific HR (i.e. HR while walking at 5.5 km/h). R2

varied between 0.73 and 0.80 when including fat-free mass among the predictors. Subject
independent evaluation of CRF estimation models using free-living data showed reduced
RMSE between 354.7 ml/min (anthropometrics only) and 281.0 ml/min when includ-
ing context-specific HR as predictors (21% error reduction). We conclude that pattern
recognition techniques can be used to contextualize HR in free-living and estimated CRF
with accuracy comparable to what can be obtained with simulated activities in laboratory
settings.

10.1 Introduction

Cardiorespiratory fitness (CRF) is among the most important determinants of
health and wellbeing, being a diagnostic and prognostic health indicator for pa-
tients in clinical settings, as well as healthy individuals. CRF can be adopted as a
proxy of cardiovascular and cardiorespiratory health [81, 111]. While recent de-
velopments in wearable sensor technologies improved the accuracy of physical
activity monitoring devices in daily life, almost all solutions focus on behavioral
aspects such as steps, activity type and energy expenditure (EE) [29]. Steps or
EE are relevant markers of an individual’s health, however they mainly reflect
the individual’s behavior, instead of the individual’s health status. CRF estima-
tion using wearable sensors could provide more insights on an individual’s health
status, non-invasively, and therefore help clinicians and individuals coaching or
leading a more health lifestyle.

Currently, the gold standard for CRF measurement is performed by direct mea-
surement of oxygen consumption during maximal exercise (i.e. V O2max) [124].
However, V O2max measurements require medical supervision and can be risky
for individuals where exercise till maximal exertion is contra-indicated. Despite
the indubitable importance of CRF in health, measurements of V O2max are there-
fore rare [94] and less risky submaximal tests have been developed. Non-exercise
CRF estimation models use easily accessible measures such as age, gender and a
self-reported physical activity level [73, 93]. However, for individuals with simi-
lar anthropometric characteristics, CRF levels cannot be discriminated accurately.
Alternatively, submaximal tests have been introduced to estimate V O2max dur-
ing specific protocols while monitoring HR at predefined workloads [18, 54]. The
strict workload imposed by the protocol is used to exploit the inverse relation be-
tween HR in a specific context (e.g. while running or biking at a specific intensity)
and V O2max. However the need for laboratory equipment and the necessity to re-
perform the test to detect changes in CRF limit the practical applicability of such
techniques. Ideally, we would like to estimate CRF in free-living during activi-
ties of daily living, thus without the need for specific laboratory tests or exercise
protocols.

Miniaturized wearable sensors combining accelerometer and HR data provide
a way to investigate the relation between physical activity, HR and V O2max in
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free-living. Additionally, advances in signal processing and machine learning
techniques, recently provided new methods to accurately recognize contexts in
which HR can be analyzed, such as activity type, walking speed and EE [9, 29,
118], in free-living. Preliminary work explored the relation between physical ac-
tivity as expressed by a step counter, and CRF [40]. While steps could provide
useful insights, the relation between HR and V O2 at a certain exercise intensity
cannot be exploited using motion based sensors. Plasqui et al. [99] showed that
a combination of average HR and physical activity over a period of 7 days corre-
lates significantly with V O2max. However, the relation between average HR and
activity counts depends on the amount of activity performed, and therefore could
also be affected by behavioral correlates of CRF. Tonis et al. [120] explored differ-
ent parameters to estimate CRF from HR and accelerometer data during activities
of daily living simulated in laboratory settings. However V O2max reference and
free-living data were not collected. When moving towards free-living settings, HR
is of greater difficulty to interpret, since activities vary depending on the different
lifestyles people adopt. However, previous studies exploring the relation between
V O2max and HR in free-living, showed positive results.

In this study, we aimed at investigating the relation between submaximal HR in
specific contexts as recorded by wearable sensors in free-living, and CRF. We first
isolated the same contexts in laboratory settings and free living. Then we analyzed
the relation between context-specific HR during activities simulated in the lab
and context-specific HR as detected by pattern recognition methods deployed in
free-living, by using correlation and relative differences in HR for each context.
Finally, we used context-specific HR in free-living to estimate CRF. Our results
showed that V O2max estimation using as predictors context-specific HR in free
living provides accuracy comparable with laboratory derived models.

10.2 Methods

10.2.1 Participants

Participants were 51 (24 male, 27 female) healthy adults. Anthropometric char-
acteristics and CRF level are reported in Table 10.1. Written informed consent
was obtained by each participant. The study was approved by the medical ethics
committee of Maastricht University.

10.2.2 ECG and accelerometer device

The sensor platform used was an ECG Necklace. The ECG Necklace [98] is a low
power wireless ECG platform. The system relies on an ultra-low-power ASIC
for ECG read-out, and it is integrated in a necklace, providing ease-of-use and
comfort while allowing flexibility in lead positioning and system functionality.
It achieves up to 6 days autonomy on a 175 mAh Li-ion battery. For the current
study, the ECG Necklace was configured to acquire one lead ECG data at 256 Hz,
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Table 10.1: Participants’ characteristics.

Parameter Mean ± SD
n 51 (24 male, 27 female)

Age (y) 25.1± 6.0
Body weight (kg) 68.4± 10.8

BMI (kg/m2) 22.7± 2.5
Fat free mass (kg) 52.6± 9.2
V O2max (ml/min) 3037.5± 671.6

and accelerometer data from a tri-axial accelerometer (ADXL330) at 64 Hz. The
ADXL330 accelerometer provides a ś3g range and high sensitivity (300 mV/g),
and was digitalized to 12 bits input by the ECG Necklace. The x, y, and z axes
of the accelerometer were oriented along the vertical, mediolateral, and antero-
posterior directions of the body, respectively. The ECG Necklace was not attached
to the body, to improve user comfort during free-living. Two gel electrodes were
placed on the participant’s chest, in the lead II configuration. Data were recorded
on the on-board SD card to ensure no data loss.

The ECG Necklace was previously validated as a reliable physical activity mon-
itor able to quantify different physical activity parameters with high accuracy,
such as activity type, walking speed and EE [9, 14]. A continuous wavelet trans-
form based beat detection algorithm was used to extract RR intervals from ECG
data. Segments of data identified as lying or sedentary (no or limited movement)
as well as flat ECG signal or non-realistic HR were treated as monitor not worn.
Non-realistic HR was identified as periods where consecutive RR intervals varied
more than 20%, as typically performed in clinical practice for heart rate variability
analysis.

10.2.3 Study design

The ECG Necklace was worn during laboratory protocols and free-living.

10.2.3.1 Laboratory protocols

Participants reported at the lab on three separate days and after refraining from
drinking, eating and smoking in the two hours before the experiment. Two labora-
tory protocols were performed, while the third day was used for anthropometric
measurements including the participant’s body weight and height.

• The first protocol included simulated activities performed while connected
to an indirect calorimeter (Omnical, Maastricht University, The Netherlands)
for reference EE. Activities included: lying down, sitting, sit and write, stand-
ing, cleaning a table, sweeping the floor, walking (treadmill flat at 2.5, 3, 3.5,
4, 4.5, 5, 5.5, 6 km/h) and running (treadmill flat at 7, 8, 9, 10 km/h). Activ-
ities were carried out for a period of at least 4 minutes.
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• The second protocol was a V O2max test providing reference data for biking
and CRF. V O2max was determined during an incremental test on a cycle er-
gometer according to the protocol of Kuipers et al. [78]. After a 5-min warm-
up at 100 W for men and 75 W for women, workload was increased by 50 W
every 2.5 min. When the HR reached 35 bpm below the age-predicted max-
imal HR (208× 0.7× age) or the respiratory quotient exceeded 1, workload
was increased by 25 W every 2.5 min until exhaustion. Expired air was con-
tinuously analyzed for O2 consumption and CO2 production using indirect
calorimetry.

10.2.3.2 Free-living protocol

Participants wore the ECG necklace for 14 consecutive days in free-living while
carrying out their normal activities of daily living. Participants were instructed
to wear the ECG necklace during day and night, except during showering, water
activities or charging of the ECG necklace. Charging was performed daily for 1
hour. Participants were also instructed to change electrodes daily or after physical
exercise.

10.2.4 Data processing

Context-specific HR in laboratory settings was determined as the mean HR during
scripted activities performed by the participant and combined with anthropomet-
rics in a regression model to predict V O2max. The regression model was analyzed
to validate the assumption that submaximal context-specific HR can be used to es-
timate CRF level. Activity type recognition and walking speed models were built
using data from laboratory settings, and used in free-living. For each participant,
models were built using only data from other participants. Therefore, all models
were non-individualized and no laboratory data from the participant to be vali-
dated was used for model building. The procedure used for model building and
evaluation is shown in Figure 10.1. More details on the validation procedures
are reported in the Statistics and performance measures Section. Context-specific
HR in free-living was used in a multiple regression model to estimate V O2max
without the need for laboratory protocols and analyzed with respect to results ob-
tained using submaximal context-specific HR acquired during activities of daily
living simulated in laboratory settings.

10.2.4.1 Activity type and walking speed

The raw acceleration signal was downloaded and processed for two purposes.
The first purpose was to develop an activity recognition algorithm using data
acquired during simulated activities of daily living in the laboratory protocols.
The activity recognition algorithm was then used to detect the activity types per-
formed during the free-living protocol. Secondly, the raw acceleration signal was
processed to determine walking speed for activities recognized as walking. The
acceleration signal was segmented in non-overlapping intervals of 5 seconds. This
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Figure 10.1: Block diagram of the proposed approach and validation procedure.
Activity recognition and walking speed estimation models are built and validated
using supervised laboratory recordings. Then, models are deployed in free-living.
Activity recognition and walking speed estimation are used to determine HR in
specific contexts in free-living. Finally, HR in specific contexts (e.g. HR while lying
down or walking at a certain speed) are used as predictors forV O2max estimation,
effectively estimating CRF level from free-living data. All models are validated
using leave one subject out cross validation, i.e. no data used for model validation
was used for model building, as described in the Statistics section. An example
of activity recognition and walking speed estimation models output is shown in
Figure 10.3.

segment length was selected based on previous studies [118]. Segmented data
was separately filtered by two filters to create different feature sets. One feature
set included accelerometer data band-pass filtered between 0.1 and 10 Hz, to iso-
late the dynamic component due to body motion, while the second feature set
included accelerometer data low-pass filtered at 1 Hz, to isolate the static com-
ponent, due to gravity. Figure. 10.2 shows an example of raw data, low-passed
data and band-passed data for one participant during one of the laboratory pro-
tocols. Features used for activity recognition were: mean of the absolute signal,
inter-quartile range, median, variance, main frequency peak and low frequency
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band signal power. All accelerometer features but the median, were derived from
band-pass filtered data. These features were derived and selected based on our
previous work [9], using a different dataset. HR was extracted from RR inter-
vals, and averaged over 15 seconds windows. Laboratory activities were grouped
into six clusters to be used for activity classification. The six clusters were lying
(lying down), sedentary (sitting, sit and write, standing), dynamic (cleaning the
table, sweeping the floor), walking, biking and running. Activities were derived
using a Support Vector Machine (SVM), a classifier showing good results in our
previous research [9]. Features for the multiple linear regression model used to
estimate walking speed were: mean of the absolute signal, inter-quartile range,
variance, main frequency peak, high frequency band signal power and height of
the participant, and were also based on our previous work [10]. All accelerometer
features used for the walking speed models were derived from band-pass filtered
data.

Figure 10.2: Raw accelerometer data (top), low-pass filtered data (center) and
band-pass filtered data (bottom). The gravity component is isolated when using
low-pass filtered data, as shown in the center plot. This information is particularly
useful to distinguish postures. Band-pass filtered data isolates the accelerometer
component due to body motion, showing increased values for higher intensity
motions. Band-pass filtered data is particularly useful to distinguish ambulatory
activities and walking speeds. Data were downsampled for visualization pur-
poses.
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10.2.4.2 CRF estimation

CRF was estimated using multiple linear regression models. First, we investigated
the relation between HR in specific contexts as acquired during activities of daily
living simulated in laboratory settings, and V O2max. We predicted V O2max by
combining anthropometric characteristics and HR while lying down and while
walking at 3.5 and 5.5 km/h. We chose lying down and walking at 3.5 and 5.5
km/h as specific contexts since lying down and walking are activities of daily
living commonly performed by healthy individuals in most environments. Addi-
tionally, the average walking speeds in healthy individuals was reported in pre-
vious studies between 5 and 6 km/h (5.3 km/h in [36] and 5± 0.8 km/h in [89]).

Then, we analyzed the relation between context-specific HR during activities
of daily living simulated in laboratory settings, and context-specific HR during the
same activities as detected by our activity recognition and walking speed models,
in free-living. The analysis of the relation between context-specific HR in labora-
tory settings and free-living consisted of computing the correlation coefficient and
relative differences between HR in laboratory settings and free living. This anal-
ysis is merely to provide some perspective on context-specific HR with respect to
laboratory measurements. However, free-living regression models are built and
evaluated using free-living data only.

Finally, we predicted V O2max by combining anthropometric characteristics
and HR while lying down and while walking at 3.5 and 5.5 km/h as determined
from free-living data, to evaluate the ability of the context-specific HR detected
using pattern recognition methods to estimate CRF.

10.2.4.3 Statistics

Activity recognition and walking speed estimation models were derived using
laboratory data and evaluated using leave-one-participant-out cross validation.
The same training set, consisting of data from all participants but one, was used
to build feature selection, activity recognition and walking speed estimation and
CRF estimation models. The remaining data was used for validation. The proce-
dure was repeated for each participant and results were averaged. Performance
of the activity recognition models was evaluated using the class-normalized ac-
curacy, using laboratory recordings. Results for walking speed estimation were
reported in terms of Root-mean-square error (RMSE), where the outcome variable
was speed in km/h. The relation between HR and CRF were reported using Pear-
son’s correlation coefficient (r) for both activities simulated in laboratory settings
and free-living data. The relation between context-specific HR during activities of
daily living simulated in laboratory settings and in free-living as detected by pat-
tern recognition methods was reported using Pearson’s correlation coefficient (r)
and the mean and standard deviation of the difference between context-specific
HR in laboratory settings and in free-living. Results for CRF estimation models
were reported in terms of explained variance (R2). The Bland-Altman plot was
used to determine the agreement between measured and predicted CRF. Finally,
subject-independent evaluation for CRF estimation models was also performed,
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using leave one participant out cross-validation. We reported results for subject
independent CRF estimation in terms of RMSE, where the outcome variable was
V O2max in ml/min as measured in laboratory conditions. Paired t-tests were
used to compare results. Significance was set at α < 0.05.

10.3 Results

10.3.1 Descriptive statistics

The dataset considered for this work contained 491 days of data collected from
51 participants in free-living, thus about 10 days per participant, including ac-
celerometer and ECG data. Eighty-three hours of laboratory recordings including
reference V O2, V CO2, acceleration, ECG and V O2max were collected for model
building and evaluation. Laboratory measurements were discarded for two par-
ticipants where we observed measurement errors. Anthropometric characteristics
and CRF level for the participants are reported in Table 10.1. Fig. 10.3 shows an
exemplary output of the walking speed and activity recognition models for one
participant during 24 hours of free-living recordings. Context-specific HR as iden-
tified using activity recognition and walking speed models in free-living is also
shown in Fig. 10.3.

10.3.2 CRF estimation from context-specific submaximal HR during sim-
ulated activities of daily living

HR during activities of daily living simulated in laboratory settings was 66.2 ±
12.3 bpm for lying, 91.0 ± 15.3 bpm for walking at 3.5 km/h and 107.8 ± 17.7
bpm for walking at 5.5 km/h. Pearson’s correlation between context-specific sub-
maximal HR as measured during activities of daily living simulated in laboratory
settings and CRF was -0.43 for lying down, -0.47 for walking at 3.5 km/h and -0.51
for walking at 5.5 km/h. Thus, confirming the hypothesis that submaximal HR is
inversely related to CRF. Explained variance (adjustedR2) for multiple regression
models including sex, body weight and age as predictors of CRF, was 0.64. Ad-
justed R2 increased when including context-specific HR, and was 0.69 for lying,
0.72 for walking at 3.5 km/h and 0.74 for walking at 5.5 km/h. Thus, confirming
that activities of higher submaximal intensities explain more of the variance in the
model. Results are reported in Table 10.2 while Fig. 10.4 shows scatterplots of ref-
erence against fitted values as well as Bland-Altman plots. When including more
advanced anthropometrics, such as fat free mass instead of body weight, R2 was
0.73 when no HR was used among the predictors, 0.74 for lying, 0.76 for walking
at 3.5 km/h and 0.78 for walking at 5.5 km/h.

10.3.3 Context recognition; activity type and walking speed

Laboratory recordings with reference activity type were used to determine accu-
racy of the models used in free-living. Accuracy of the SVM activity recognition
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Figure 10.3: Exemplary output of the models used to contextualize HR in free-
living in this work, for one participant. a) Recognized activity types. Commuting
by bike, training (running), sleep and a mostly sedentary job during waking hours
can be easily identified from this plot. b) Estimated walking speeds when the
activity type algorithm identifies the walking activity. c) HR and contextualized
HR. Contextualized HR, i.e. in this example the HR while walking at 5.5 km/h,
is highlighted in black.

classifier was 94.1%. More specifically, the accuracy was 96.4% for lying, 95.6% for
sedentary activities, 83.3% for dynamic, 98.2% for walking, 91.4% for biking and
99.7% for running. The explained variance for the walking speed model was 0.85
(R2). Walking speed estimation RMSE for subject independent analysis was 0.37
km/h across all speeds. Activities in free-living over the complete dataset were
recognized as follows: 44.4% lying, 36.4% sedentary, 9.5% dynamic, 5.4% walking,
3.8% biking and 0.4% running. Average walking speed was 3.6 ± 1.5 km/h. Par-
ticipants spent on average 77.7 minutes per day walking, 11.9 minutes of which
were at 3.5 km/h and 11.6 minutes of which were at 5.5 km/h.

10.3.4 Relation between context-specific submaximal HR during activ-
ities of daily living simulated in laboratory settings and in free-
living

Pearson’s correlation between context-specific submaximal HR measured during
activities of daily living simulated in laboratory settings and in free-living as de-
tected by pattern recognition methods was 0.71 for lying down, 0.71 for walking
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Table 10.2: Multiple linear regression models for V O2max estimation from activ-
ities of daily living simulated in laboratory settings.

Model description Predictors R2

Anthropometric charac-
teristics only

Body weight, age, sex 0.64

Context-specific HR HR while lying down in labora-
tory settings, body weight, age,
sex

0.69

HR while walking at 3.5 km/h
in laboratory settings, body
weight, age, sex

0.72

HR while walking at 5.5 km/h
in laboratory settings, body
weight, age, sex

0.74

at 3.5 km/h and 0.75 for walking at 5.5 km/h. Mean difference between context-
specific HR in laboratory settings and free-living was 2.9 ± 8.7 for lying (mean
HR while lying down was 63.2 bpm in free-living and 66.2 bpm in laboratory set-
tings), 8.7 ± 11.2 for walking at 3.5 km/h (mean HR while walking at 3.5 km/h
was 99.9 bpm in free-living and 91.0 bpm in laboratory settings) and -2.7 ± 11.5
for walking at 5.5 km/h (mean HR while walking at 5.5 km/h was 106.3 bpm in
free-living and 107.8 bpm in laboratory settings). Thus, all differences were be-
low 10%. Histograms of the differences and scatterplots of context-specific HR in
laboratory settings and free-living are shown in Fig. 10.5.

10.3.5 CRF estimation from context-specific submaximal HR in free-
living

HR during specific contexts in free-living was 63.2± 9.3 bpm for lying, 99.9 ś±11.6
bpm for walking at 3.5 km/h and 106.3± 11.8 bpm for walking at 5.5 km/h. Pear-
son’s correlation between context-specific submaximal HR as measured in free-
living and CRF was -0.54 for lying down, -0.52 for walking at 3.5 km/h and -0.60
for walking at 5.5 km/h. Thus, confirming the hypothesis that submaximal HR
is inversely related to CRF. Adjusted R2 increased from the case where no HR
was included (R2 = 0.65), when including context-specific HR. More specifically
R2 was 0.73 for lying, 0.74 for walking at 3.5 km/h and 0.77 for walking at 5.5
km/h. Thus, confirming that activities of higher submaximal intensities explain
more of the variance in the model, even when carried out in free-living. Results
for all models are reported in Table 10.3 and Bland-Altman plots for all models
are shown in Fig. 10.6. When including more advanced anthropometrics, such as
fat free mass instead of body weight, R2 was 0.73 when no HR was used among
the predictors, 0.77 for lying and 0.80 for walking at 3.5 km/h and 5.5 km/h.
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Figure 10.4: Accuracy of the prediction models for CRF estimation. Regression
plots and Bland-Altman plots are shown for models using as predictors anthro-
pometrics and context-specific HR during activities of daily living simulated in
laboratory conditions. R2 is also reported.
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Figure 10.5: Top row: histograms of differences between context-specific HR in
laboratory settings and free-living. Bottom row: scatterplots showing the relation
between context-specific HR in laboratory settings and free-living.

10.3.6 Cross-validation of V O2max estimates

V O2max estimation models derived from free-living data were cross-validated
using the leave-one-out technique. Results are shown in Fig. 7 and 8 and reported
in Table 10.4 and 10.5. Cross-validation of V O2max estimates using as predictors
context-specific HR as measured during activities of daily living simulated in lab-
oratory settings: RMSE for the model including anthropometric characteristics
only as predictors was 358.3 ml/min (R2 was 0.66). RMSE was reduced when in-
cluding HR in specific contexts among the predictors, with RMSE = 314.3 ml/min
(R2 = 0.73) for lying down, RMSE = 310.0 ml/min (R2 = 0.75) for walking at 3.5
km/h, and RMSE = 284.7 ml/min (R2 = 0.78) for walking at 5.5 km/h as specific
contexts. Thus, RMSE was reduced up to 21% when including context-specific
HR among the predictors. Cross-validation of V O2max estimates using as predic-
tors context-specific HR as derived by pattern recognition methods in free-living:
RMSE for the model including anthropometric characteristics only as predictors
was 354.7 ml/min (R2 was 0.67). RMSE was reduced when including HR in spe-
cific contexts among the predictors, with RMSE = 309.4 ml/min (R2 = 0.75) for ly-
ing down, RMSE = 305.91 ml/min (R2 = 0.76) for walking at 3.5 km/h, and RMSE
= 281.0 ml/min (R2 = 0.79) for walking at 5.5 km/h as specific free-living contexts.
Thus, RMSE was also reduced up to 21% when including context-specific HR as
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Table 10.3: Multiple linear regression models for V O2max estimation from free-
living data.

Model description Predictors R2

Anthropometric charac-
teristics only

Body weight, age, sex 0.65

Context-specific HR HR while lying down in free-
living, body weight, age, sex

0.73

HR while walking at 3.5 km/h
in free-living, body weight, age,
sex

0.74

HR while walking at 5.5 km/h
in free-living, body weight, age,
sex

0.77

Table 10.4: Cross validation of multiple linear regression models for V O2max es-
timation using as predictors context-specific HR as measured during activities of
daily living simulated in laboratory settings.

Model description Predictors RMSE
ml/min

R2

Anthropometric charac-
teristics only

Body weight, age, sex 358.3 0.66

Context-specific HR HR while lying down in labora-
tory settings, body weight, age,
sex

314.3 0.73

HR while walking at 3.5 km/h
in laboratory settings, body
weight, age, sex

310.0 0.75

HR while walking at 5.5 km/h
in laboratory settings, body
weight, age, sex

284.7 0.78

determined from pattern recognition methods, among the predictors.

10.4 Discussion

In this work, we proposed a method to estimate V O2max in free-living, with-
out the need for laboratory tests or specific protocols. While many methods have
been developed to estimate V O2max using data collected under supervised labo-
ratory conditions or following strict protocols, limited work tried to estimate CRF
using wearable sensors and data collected under unsupervised settings in free-
living [40, 99]. We adopted pattern recognition techniques to determine specific
contexts, e.g. low intensity activities of daily living such as lying down and walk-
ing at predefined speeds, to contextualize submaximal HR without the need for a
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Figure 10.6: Accuracy of the prediction models for CRF estimation. Regression
plots and Bland-Altman plots are shown for models using as predictors anthro-
pometrics and context-specific HR in free-living. R2 is also reported.
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Table 10.5: Cross validation of multiple linear regression models for V O2max esti-
mation using as predictors context-specific HR as detected by pattern recognition
methods in free-living.

Model description Predictors RMSE
ml/min

R2

Anthropometric charac-
teristics only

Body weight, age, sex 354.7 0.67

Context-specific HR HR while lying down in free-
living, body weight, age, sex

309.4 0.75

HR while walking at 3.5 km/h
in free-living, body weight, age,
sex

305.9 0.76

HR while walking at 5.5 km/h
in free-living, body weight, age,
sex

281.0 0.79
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Figure 10.7: RMSE for subject independent cross validation of the CRF estimation
models using context-specific HR as measured during activities of daily living
simulated in laboratory settings. Error bars represent standard error. RMSE is
reduced including context-specific HR next to anthropometrics, with lower error
shown for higher intensity activities.

strict exercise protocol. We first validated the effectiveness of submaximal context-
specific HR as a predictor of V O2max during activities of daily living simulated
in laboratory settings. Then we analyzed the correlation and relative differences
between context-specific HR during activities simulated in the lab and context-
specific HR as detected by pattern recognition methods deployed in free-living.
Finally, we used context-specific HR in free-living to estimate CRF. Our results
showed that V O2max estimation using as predictors context-specific HR in free
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Figure 10.8: RMSE for subject independent cross validation of the CRF estimation
models using context-specific HR in free-living. Error bars represent standard
error. RMSE is reduced including context-specific HR next to anthropometrics,
with lower error shown for higher intensity activities.

living provides accuracy comparable with laboratory derived models. Our results
confirm our assumptions, showing that RMSE for V O2max estimation could be
reduced up to 21% compared to anthropometric characteristics only, by using as
predictors HR in specific contexts as determined by pattern recognition methods
in free-living.

10.4.1 Context-specific HR during activities of daily living simulated in
laboratory settings

The main assumption behind this study was that submaximal HR is inversely re-
lated to V O2max, and that the correlation is higher during submaximal activities
of higher intensity. Our laboratory recordings confirm this assumption. Pear-
son’s correlation between context-specific HR and V O2max went from -0.43 to
-0.51 for lying and walking activities. Multiple regression models showed higher
explained variance (R2 between 0.64 and 0.74) when including context-specific
HR. Increasing activity intensity, i.e. from lying to slow walking (3.5 km/h) to
faster walking (5.5 km/h) further improved R2. These results are in agreement
with a significant body of literature relying on submaximal HR for V O2max es-
timation during more intense activities, such as biking or running, compared to
the low intensity activities used in this study [132].
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10.4.2 Context recognition in free-living

We deployed activity recognition and walking speed estimation algorithms in
free-living, in order to contextualized submaximal HR without the need for strict
exercise protocols or laboratory tests. Our activity recognition model showed high
accuracy in detecting lying and walking activities (96.4-98.2%), given the peculiar
accelerometer fingerprints of such activities, characterized either by different ac-
celerometer orientation with respect to other activities or very specific repetitive
movements. The activities chosen as free-living contexts were lying down and
walking, for the following reasons. First, those are common activities performed
by healthy individuals in most environments. Secondly, the inverse relation be-
tween HR at rest or sleeping HR and CRF was already shown in previous research,
highlighting how this parameter can be valuable for V O2max estimation. Finally,
walking activities can be discriminated in intensity, by detecting walking speed,
using simply an accelerometer. This is an important factor when trying to de-
tect specific context in free-living, since detecting only activity type, if the activity
can be carried out at different intensities, would not be sufficient to determine the
same context for each individual. However, walking is an activity that can be ac-
curately quantified in terms of both type (i.e. walking) and intensity (i.e. speed).
The proposed activities are low intensity and were performed daily by the par-
ticipants involved in our study, as shown by the analysis of free-living data. Our
study population spent on average 44.4% of the free-living time lying down and
5.4% of the free-living time walking. Of the time spent walking, 11.9 minutes daily
were spent at 3.5 km/h, while 11.6 minutes daily were spent at 5.5 km/h, the two
speeds used by our models to contextualize HR. Considering that many fitness
tests require protocols shorter than 11 minutes (e.g. the common 6-minutes walk-
ing test), we believe a total of 10 minutes daily is a sufficient amount of data for
prediction of V O2max, at least in the population of healthy adults considered in
this study. We could evaluate activity recognition and walking speed models only
under laboratory conditions, where reference was present. The dynamic activity
cluster was recognized with accuracy below average. We interpret that activities
with high variability in movement and execution between participants and using
a single chest-worn sensor resulted in higher classifier confusions. However, the
high accuracy of walking speed estimation models and activity recognition for
walking provide confidence for the free-living detection of activities used to con-
textualize HR. Additionally, from the cross-validation analysis results we can see
how subject independent models built using activities of daily living simulated in
laboratory settings (RMSE were 314.3 ml/min, 310.0 ml/min and 284.7 ml/min
for lying, walking at 3.5 km/h and walking at 5.5 km/h were respectively) are
similar to RMSE results obtained contextualizing HR using pattern recognition
methods in free-living (309.4 ml/min, 305.9 ml/min and 281.0 ml/min for lying,
walking at 3.5 km/h and walking at 5.5 km/h respectively). These results can
serve as indirect validation of the accuracy of activity recognition and walking
speed estimation in properly detecting the relevant contexts in free-living.
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10.4.3 Context-specific HR in free-living

Context-specific HR in free-living showed relations with V O2max similar to what
we reported in laboratory settings. The inverse relation between HR at a certain
workload and V O2max is the key principle behind laboratory based submaximal
CRF tests and this relation showed to be valid not only in laboratory settings but
also in free-living as well. The correlation between HR while lying down in free-
living and V O2max was -0.54 and it was increased up to -0.60 when the HR while
walking at 5.5 km/h in free-living was used. Explained variance also increased,
between 0.65 when anthropometrics characteristics only were used to estimate
V O2max, and 0.77 when using context-specific HR. We also analyzed the relation
between HR during the same activities carried out in laboratory settings and free-
living. We expected differences in HR due to the different settings, e.g. walking
in free-living might include carrying weights, walking on inclined surfaces, or
other factors that might raise HR, while lying down in laboratory settings might
be more stressful than sleeping, therefore lowering HR with respect to laboratory
conditions. Additionally, a single laboratory measurement might be affected by
factors such as the previous days physical activity, while free-living recordings
averaged over multiple days might provide more stable representations of a par-
ticipant’s physiology. However, analyzing the relation between laboratory and
free-living HR in the same contexts can be useful to determine to what extent lab-
oratory recordings can be reproduced in free-living as well as the ability of pattern
recognition methods to detect differences between contexts such as lying down or
walking at different speeds, in unsupervised free-living conditions. The relatively
high correlation between laboratory and free-living HR (0.71-0.75), as well as sim-
ilar mean values and consistent differences between conditions (i.e. higher HR for
walking at higher speed, or higher intensity, in our case HR for laboratory activi-
ties and free-living was 66.2 bpm and 63.2 bpm for lying, 91.0 and 99.9 for walking
at 3.5 km/h and 107.8 and 106.3 for walking at 5.5 km/h) are all promising results
that free-living data can be used as a reliable substitute of laboratory recordings
for context-specific submaximal HR.

10.4.4 Fat free mass

Analysis of V O2max estimation including fat free mass instead of body weight
among the predictors resulted in higher accuracy, as expected and previously
shown in literature [99]. In particular, R2 was increased between 0.74 and 0.78
for laboratory based measurements and between 0.77 and 0.80 for context-specific
HR determined in free-living. However, since the aim of our work is to provide
V O2max estimation outside of the laboratory environment, we focus on simple
anthropometrics only (i.e. body weight, age and sex) in the remaining of our dis-
cussion.
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10.4.5 Cross-validation of V O2max estimates

We also performed cross validation using subject independent models forV O2max
estimation as our aim was to validate the proposed methods using state of the art
techniques able to validate the model on unseen data. Results for cross validation
were consistent with what was shown before. Our results confirm that when es-
timating CRF, the individual’s anthropometric characteristics are not sufficient to
provide an accurate estimate. Differences in CRF among participants with sim-
ilar body size (e.g. similar body weight and height) are not distinguishable if
no physiological data is used in the models. Thus, the lower RMSE showed by
V O2max estimation models including HR as predictor shows the ability of sub-
maximal context-specific HR to discriminate between such participants with sim-
ilar anthropometric characteristics and further reduce V O2max estimation error.
As expected, contextualizing HR using more intense activities, such as walking
at 5.5 km/h instead of lying, provides better results. It is interesting to note that
subject independent analysis RMSE was reduced consistently between models us-
ing anthropometrics only and context-specific HR (for any activity), both in lab-
oratory settings and free-living. However, increasing the intensity of the specific
context analyzed, e.g. from lying down to walking at 3.5 km/h to walking at 5.5
km/h did not consistently reduce RMSE. RMSE for models including HR while
lying down and slow walking (i.e. walking at 3.5 km/h) were similar, highlight-
ing that the physiological responses to exercise we are interested in monitoring,
might require a certain level of intensity for the model to benefit beyond what can
be already achieved using lying HR as predictor. These findings are valid both
in laboratory settings using HR during simulated activities of daily living and in
free-living using HR as detected by pattern recognition methods.

10.4.6 Comparison with prior work

Little work was reported in literature on protocol-free V O2max estimation. Pre-
vious studies aiming at estimating V O2max in free-living conditions were either
limited to using physical activity-related parameters, such as steps, as proposed
by Cao et al. [40], HR normalized by activity intensity, as proposed by Plasqui et
al. [99], or requiring intense exercise such as running [132]. Results for V O2max
estimation reported in terms of R2 or RMSE cannot be easily compared between
studies, due to the dependency of these parameters on the study’s participants
characteristics, for example body weight and V O2max levels. However, we report
in this section R2 results as typically reported by other studies to put ours in per-
spective with current state of the art in V O2max estimation. For some studies,
e.g. [99], participants had similar characteristics to our study, and therefore com-
parisons can be meaningful. We reported R2 of 0.79 for our subject independent
analysis. Results reported by Plasqui et al. on a cross-validation sample for his
method showed that using as predictor HR divided by activity counts, a measure
of motion intensity, V O2max could be predicted with R2 = 0.72. The populations
in the two studies are comparable, and therefore further contextualizing HR in
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free-living (i.e. using as predictor HR while walking at a certain speed) seems
beneficial. Other protocols involving more intense activities, such as running, did
not provide better results. For example, by combining the ratio of inverse foot-
ground contact time and HR during steady state running, Weyand et al. [132] re-
ported R2 = 0.74 in the experimental group and R2 = 0.67 in the cross-validation
group.

By using context-specific HR in free-living as predictor, we obtained results
comparable to or better than previous free-living studies and are also comparable
to what was reported using similar metrics in laboratory settings or while per-
forming strict protocols [111]. For example, ninety-two different V O2max proto-
cols were reviewed in a recent analysis by Sartor et al. [111]. Additionally to the
free-living studies here discussed, the authors suggested that many other sub-
maximal tests could be performed in free-living, without laboratory infrastruc-
ture. However, most of these tests require intense activities and strict protocols,
for example the most commonly used 2-mile run (Mello et al. [88], R2 = 0.81),
Canadian aerobic fitness test (Jette et al. [75], R2 = 0.82), or YMCA (Santo et al.
[110], R2 = 0.56). The accuracy of the best performing tests is comparable to our
free-living estimation. However, the approach proposed in this work does not
require intense activities, and is therefore suitable on a wider population. Ad-
ditionally, the proposed approach does not require a specific test, and therefore
V O2max could be continuously assessed longitudinally over time, and not only
re-assessed when the test is performed. The effectiveness of context-specific HR
as derived in free-living with respect to laboratory based protocols was also val-
idated in our own analysis, showing comparable RMSE and R2 when including
laboratory derived HR or free-living HR.

Other studies investigate the relation between easily accessible measures such
as HR or HR variability at rest and V O2max [55]. However, these studies typi-
cally reported low levels of accuracy (Esco et al. [55], R2 = 0.29), showing that
single measurements or spot measurements of physiological parameters and lim-
ited levels of context are insufficient for a reliable V O2max estimate. A possible
explanation for the better performance of the proposed approach compared to
both single spot checks and more intense protocols that can be carried out in free-
living, is that by contextualizing HR over multiple days, our proposed approach
is less prone to the day-to-day variability typical of physiological measurements.

The clear advantage of the current approach is the ability to provide estimates
during normal activities of daily living, as carried out by individuals. We vali-
dated our models independently on the participant, using cross-validation and
the leave-one-out technique. Additionally, for all our models, we used as predic-
tor body weight instead of fat-free mass to provide estimates from easily accessible
measures that can be acquired without complex and expensive laboratory infras-
tructure. Thus, our results are extendable to new participants without the need of
re-training the models or other laboratory protocols. The current implementation
could be directly deployed to new studies in free-living conditions.
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10.4.7 Limitations and future work

A limitation of this study is the validation on healthy adults only, with similar
lifestyles in a Dutch setting. Future work should investigate if the proposed CRF
estimation model is suitable for other groups such as the obese and persons af-
fected by chronic disease, and if the proposed activity recognition system or other
activity recognition systems trained to recognize only the relevant activities to
contextualize HR (e.g. lying and walking) can be suitable for these populations.
In non-healthy populations changes in CRF could provide an additional marker
of disease progression. Additionally, future work should address the ability of the
proposed method not only to estimate CRF for an individual, but to track changes
in CRF over time, e.g. by means of a physical activity intervention. In this study,
we assumed V O2max to remain constant over a period of two weeks, since partic-
ipants were not implementing changes to their lifestyle, and typical interventions
to modify V O2max are of much longer duration (e.g. 3 months to 1 year).

CRF is a strong and independent predictor of all-cause and cardiovascular
mortality. When evaluating the suitability and practical applicability of a new
test, many parameters should be accounted for. The cost, convenience and in-
frastructure required are current barriers to widespread V O2max measurements,
despite the well-known relevance in healthcare. The proposed CRF estimation
model is applicable to a wide population, since it does not require intense phys-
ical exercise, and requires accelerometer and HR data only. Such measures, are
becoming more and more widespread due to mainstream availability of wearable
technology, including combined accelerometer and HR monitors. Similarly, the
processing capabilities of modern mobile phones are sufficient for practical de-
ployment of machine learning methods.

10.4.8 Conclusions

In conclusion, this work showed that contextualized HR in free-living can be used
to provide V O2max estimation with accuracy comparable to other methods rely-
ing on submaximal HR measured in laboratory settings. To the best of our knowl-
edge, this is the first study using context-specific HR determined automatically
using machine learning techniques in free-living to estimate V O2max. The pro-
posed approach could be used to provide more information about an individual’s
health without the need for laboratory infrastructure or specific tests. Building up
on the proposed approach, new opportunities for applications targeted at induc-
ing behavioral change could be developed. For example, by creating a feedback
loop between objectively measured physical activity, and changes in CRF and as-
sociated reduced risk of disease.
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Conclusions and future directions

Physical activity is key in maintaining a healthy lifestyle in the context of en-
ergy balance, obesity prevention and management as well as in a broader sense
in the context of many other diseases resulting by lack of physical activity, such
as cardiovascular disease. Being able to accurately quantify physical activity is
important for epidemiological research so that relations between physical activ-
ity, health status, environmental factors, and so on, can be determined. Similarly,
accurate quantification of physical activity can be key in deploying just in time
interventions and promote behavioral change by providing individuals with an
objective assessment of their physical activity behavior.

When analyzing the importance of physical activity in health, another impor-
tant aspect to consider is how performed physical activity reflects into changes in
physical fitness, and health status. Changes in physical fitness and heath status
are typically measured in terms of CRF, a useful diagnostic and prognostic health
indicator for patients in clinical settings, as well as healthy individuals.

The ability to properly measure and quantify both physical activity in terms
of EE and physical fitness in terms of CRF could be key for epidemiologists to
understand the relation between EE, CRF and health status. Additionally, new
applications could be developed to promote behavioral change and personalized
coaching. For example, by providing tailored feedback between physical activity
behavior (or EE) and health markers (i.e. estimated CRF level), individuals could
be helped in maintaining a healthy lifestyle.

To this aim, technological solutions able to unobtrusively measure both phys-
ical activity and fitness in free-living conditions are necessary. Thus, in this the-
sis we introduced new methods and models to provide accurate EE estimation
at the individual level without requiring individual calibration and to estimate
V O2max, in both laboratory and unsupervised free-living conditions, using wear-
able sensors data.

More specifically, we investigated four goals related to 1) selection of methods,
sensor number and positioning for EE estimation, 2) physiological data normal-
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ization to reduce EE estimation error without requiring individual calibration,
3) V O2max estimation using wearable sensor data, without the need for labo-
ratory protocols, and 4) personalized EE estimation and V O2max estimation in
free-living conditions.

11.1 Selection of methods, sensor number and positioning

Current solutions for EE estimation are affected by many limitations and up to
now have been developed without systematically analyzing a series of aspects.
For example, the number of sensors used and positioning on the body impact
EE estimation accuracy at different levels. The accuracy of the activity recogni-
tion system employed as a first stage in activity-specific EE models and the way
activities are misclassified has to be analyzed in the context of the resulting EE es-
timation error. Additionally, proposed methods using either static MET tables, ac-
celerometer, physiological data (e.g. HR) or both have not been systematically an-
alyzed to highlight what features are ideal depending on the activity performed.
At the beginning of our work, a multitude of approaches had already been pro-
posed, however, no clear methodology had been established.

In this thesis we proposed a new methodology to develop activity-specific EE
estimation algorithms. Our methodology relied on classifying clusters of activi-
ties and then estimating EE using either static MET values for sedentary activities,
or a combination of accelerometer and HR features for moderate to vigorous activ-
ities. The proposed method outperformed other techniques previously reported
in literature and was then employed in a multi-sensor system to analyze the im-
pact of sensor number and positioning on EE estimation. Results showed that
one single sensor is sufficient for accurate EE estimation, provided that the sensor
is close to the body’s center of mass. While activity recognition accuracy drops
when only one sensor is used, the misclassification of activities for sensors close
to the body’s center of mass is typically between activities with similar EE level,
therefore minimizing EE estimation error. Additionally, by using static MET val-
ues instead of accelerometer or HR features for sedentary activity clusters, we pre-
vent the estimate from being affected by physiological changes not due to physical
activity, for example changes in HR at rest due to stress.

Summary of the findings:

• One single sensor is sufficient for accurate EE estimation, showing no loss in
performance compared to multi-sensor systems including up to 5 sensors.
However, the sensor needs to be placed close to the body’s center of mass
and activity-specific models need to be used.

• Static MET values for sedentary activities and a combination of accelerom-
eter and physiological features for moderate to intense activities provide
the most accurate EE estimates. RMSE for EE estimation was reduced by
88% compared to simple linear regression models and by 23% compared to
activity-specific methods using METs lookup for active clusters.
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11.2 Physiological data normalization

In parallel to the problem of defining the optimal methodology in terms of sensor
number and positioning as well as feature selection in activity-specific EE mod-
els, we faced as major limitation the need for individual calibration. While models
using physiological signals such as HR have consistently shown higher accuracy
in EE estimation, the need for individual calibration limited practical applicabil-
ity. Individual calibration is needed since the relation between e.g. HR and EE
is specific for one individual, and cannot be generalized to a wider population.
Especially with the commercialization of many physical activity monitors, solu-
tions aiming at automatically normalizing HR are necessary to fully exploit the
potential of using physiological data for EE estimation.

Thus, once we defined an optimal methodology for activity-specific modeling
of EE estimates, the main body of this thesis focused on the major issue affecting
EE estimation based on physiological data, i.e. the need for individual calibra-
tion. To automatically normalize physiological data, we proposed two methods.
The first method relied on contextualizing HR during low intensity activities, i.e.
determining HR while walking at a specific speed. We contextualized HR by
combining an activity recognition classifier and a regression model for walking
speed estimation. Then, contextualized HR was used to predict a normalization
parameter, thus avoiding the need for individual calibration. A representation
of this procedure is shown in Fig. 11.1. The proposed method using contextu-
alized HR data as predictor for normalization parameters was then extended to
other physiological data (galvanic skin response and respiration rate), as a generic
methodology. We showed reduced EE estimation (RMSE) for models relying on
HR, galvanic skin response and respiration rate between 15% and 33% compared
non-normalized models. Then, as a second method we proposed a modeling tech-
nique relying on a hierarchical approach using Bayesian modeling. We first pre-
dicted CRF, i.e. the main underlying cause of individual differences in HR during
moderate to intense physical activities between individuals. Then, we included
CRF as group level predictor in EE estimation models. By including CRF level at
the second level of a hierarchical Bayesian model, we avoided the need for individ-
ual calibration or explicit HR normalization since CRF accounted for the different
relation between HR and EE in different individuals. Adopting this method we
showed reduced EE estimation error by 18.2% on average.
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Figure 11.1: a) EE is mainly dependent on body size, therefore two participants
with similar body weight and height consume approximately the same energy
across activities. b) The HR of the same participants might be different during the
same activities, with differences as big as 20−30%, depending on fitness level. As
a result, estimating EE from HR would cause under and overestimations, since
HR needs to be first normalized across participants. c) Block diagram of the au-
tomatic physiological data normalization method proposed in this thesis, for the
case of HR. By determining HR in specific contexts (e.g. at rest or while walk-
ing at different speeds), the HR while running is predicted, without the need for
the user to actually perform any intense activity. The predicted HR is used as
HR normalization factor, to normalize HR at runtime d) Normalized HR, for the
same participants shown in a and b, showing how individual differences in phys-
iological responses due to e.g. CRF have now being removed, since the HR across
activities are now comparable, similarly to what is shown in plot a for EE.
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Summary of the findings:

• Physiological data during low intensity activities of daily living can be used
to estimate the physiological data value during intense exercise, without
the need for performing such intense exercise. In particular, in this thesis
normalization parameters for HR, GSR and respiration rate were estimated
by regression models explaining 90%, 88% and 72% of the variance respec-
tively. Therefore, determining normalization parameters without the need
for laboratory protocols and intense activities is possible.

• Estimated physiological data normalization parameters for different signals
(HR, GSR, respiration) can be used to normalize such physiological signals
and therefore estimate EE more accurately at the individual level, without
the need for individual calibration. RMSE for EE estimation was reduced
between 15 and 33% when using normalized physiological signals.

• EE estimation error due to activity misclassification in activity-specific EE
estimation models is highly reduced when physiological data or normal-
ized physiological data are used for activity recognition as well. Misclassi-
fication effect (i.e. increased RMSE due to the application of the wrong EE
model due to an error of the activity recognition system) when no physio-
logical signals were used was 20% for the ECG Necklace and 125% for the
Wristband (due to the high confusion between active and inactive clusters).
Including normalized physiological signals reduced the misclassification ef-
fect to 4% for the ECG Necklace and 19% for the Wristband.

• The different relation between HR and EE for individuals of different CRF
level can be automatically accounted for by using a hierarchical approach to
EE modeling, without the need for explicit HR normalization. This method
uses CRF at the second level of a hierarchical model, and shows that EE esti-
mation RMSE can be reduced by 18% when the source of between-individual
variability (i.e. CRF) is known or estimated.

11.3 V O2max estimation using wearable sensor data

Another major contribution of this thesis was the shift from focusing on quantify-
ing physical activity behavior, e.g. what individuals do (activity types and intensi-
ties performed), to quantifying markers of health status influenced by physical ac-
tivity behavior, such as levels of CRF. Unsupervised CRF estimation in free-living
conditions was an area barely touched by previous research, mainly focusing on
laboratory based protocols and strict exercises. In particular, we developed the
first method to estimate V O2max from contextualized HR data collected during
activities of daily living, simulated in laboratory settings. The main assumption
behind this work was that differences in physiology for individuals of different fit-
ness levels, as typically captured during high intensity exercise, such as subaxmial
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fitness tests, would be present already during low intensity activities of daily liv-
ing. This hypothesis derives by our personalization methods for EE estimation,
where we were able to account for individual differences in fitness by estimating
normalization parameters using low intensity activities of daily living. Thus, a
hierarchical Bayesian regression approach was used, with model coefficients that
varied depending on the performed activity. Results showed that V O2max esti-
mation RMSE could be reduced up to 27% compared to models including anthro-
pometric characteristics but no contextualized HR as predictors.

Summary of the findings:

• CRF can be estimated from HR contextualized during low intensity activi-
ties of daily living such as walking at slow speeds. In particular, CRF esti-
mation RMSE could be reduced up to 27% compared to models using an-
thropometrics only as predictors.

• CRF estimation is of sufficient accuracy to allow for personalized EE estima-
tion without the need for HR normalization, when including estimated CRF
as group level predictor in a hierarchical Bayesian model for EE estimation.
Adopting this method we showed reduced EE estimation error by 18.2% on
average.

11.4 Personalized EE estimation and V O2max estimation in
free-living

Finally, in the last part of the thesis we focused on bringing the methods proposed
for personalized EE estimation and CRF estimation to free-living conditions. We
relied on pattern recognition methods to automatically recognize specific low in-
tensity activities of daily living that are used to contextualize physiological data,
estimate HR normalization parameters and CRF. Before, such detected low inten-
sity activities were typically performed in supervised laboratory settings. Most
research up to now, for both EE estimation and CRF estimation focused on lab-
oratory based protocols for model development and evaluation. Therefore new
methods and models able to account for differences in individual behavior during
unsupervised free-living activities are needed for practical applicability of person-
alized EE estimation and CRF estimation methods.

In free-living conditions, contextualizing and interpreting physiological data
is challenging, due to the effect of both low-level activity primitives (e.g. lying
down, walking, etc.) and high-level activity composites (e.g. commuting, work-
ing, socializing, etc.) on physiological data. Thus, a method was developed to
combine low-level activity primitives and high-level activity composites using
topic models. Using the proposed method, physiological data was analyzed not
only in the context of low level activities, as it can be done under supervised lab-
oratory conditions, but also depending on higher level activity composites. An
example of the proposed context recognition framework is shown in Fig. 11.2.



11.4 Personalized EE estimation and V O2max estimation in free-living 201

Figure 11.2: Context recognition framework proposed for the free-living works
included in this thesis a) Example of raw data streams for accelerometer, HR and
GPS data. b) Activity types (i.e. low level activity primitives such as walking or
lying down) are derived from raw data using supervised methods. Walking speed
is derived from raw data using regression models. Important places are derived
by clustering GPS coordinates. c) High level activity composites, representative
e.g. of activities such as sleeping, working or commuting, are derived unsuper-
visedly using topic models and activity primitives as building blocks. Walking
speeds, low level activity types and activity composites were then used to contex-
tualize HR in free-living conditions, for both EE estimation and CRF estimation
applications.
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Optimal contexts (i.e. combinations of activity primitives and composites) for ana-
lyzing HR for EE estimation and CRF estimation were determined without super-
vision. We showed that the proposed method can be used to estimate HR normal-
ization parameters in free-living conditions, and therefore personalize laboratory
derived EE models. Then, we also applied the proposed method to V O2max esti-
mation, showing reduced estimation error compared to existing methods. Finally,
we analyzed context-specific HR as derived in both laboratory and free-living set-
tings, showing that V O2max estimation as obtained using only data acquired in
free-living provides accuracy comparable or superior to laboratory based models.
We validated the proposed methods on a dataset including 50 participants wear-
ing a combined accelerometer and HR monitor for two weeks in unsupervised
free-living conditions. EE RMSE was reduced by 10.7% while V O2max estima-
tion RMSE was reduced by up to 22.6% compared to alternative methods.

Summary of the findings:

• By ranking activity composites based on extracted features (e.g. distribu-
tion of low level activity primitives within the activity composite), activity
composites can be analyzed across participants even if they are determined
unsupervisedly. Therefore, the best activity composites for a given applica-
tion could be selected, so that HR can be analyzed in the context of both low
level activity primitives and high level activities composites.

• Contextualizing HR using both low level activity primitives and high level
activity composites can provide more accurate EE estimates and CRF esti-
mates with respect to no context or HR contextualized using low intensity
activities only. In particular RMSE for EE estimation was reduced by 29.4%
compared to models using non-normalized HR and by 19.8% compared to
models using HR normalization parameters estimated using low level ac-
tivity primitives only, and no activity composites. Additionally, V O2max
RMSE was reduced by up to 22.6% compared to alternative methods.

• V O2max estimation error obtained using as predictor context-specific HR
acquired in free-living conditions is smaller or comparable to V O2max es-
timation error obtained using as predictor context-specific HR acquired in
laboratory conditions.

11.5 Limitations

One of the limitations of this thesis’ work, is that EE estimates were validated al-
ways using indirect calorimetry. Even when developing free-living models, using
contextualized HR, the effectiveness of the estimated HR normalization parame-
ters in reducing EE estimation error was validated in laboratory settings. While
double labelled water (DLW) is the only recognized method to obtain reference
EE in free-living, DLW reports only total EE after a period of one or two weeks.
Thus, DLW is not informative in terms of minute-by-minute EE estimation accu-
racy. An EE estimation model that would consistently overestimate light activities
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and consistently underestimate intense activities could perform optimally accord-
ing to DLW, due to an averaging of multiple errors. Thus, we validated our ap-
proach using laboratory data and reference indirect calorimetry, since only under
these conditions we can acquire minute-by-minute EE reference for different activ-
ities, and evaluate the models’ accuracy. Similarly, when developing our models
we could evaluate activity recognition and walking speed accuracy only under
laboratory conditions, where reference was present. Another limitation of this
thesis is the validation on young healthy adults only, with similar lifestyles in a
Dutch setting. While our goal was to provide accurate EE estimation and CRF es-
timation for healthy individuals, additional work is required to investigate if the
proposed estimation models are suitable for other groups such as different age
groups (e.g. the elderly), the obese and persons affected by chronic disease, and
if the proposed activity recognition system can be suitable for these populations.
Finally, future work is needed to determine the ability of the proposed method
not only to estimate CRF for an individual, but to track changes in CRF over time,
e.g. by means of a physical activity intervention, since in this thesis we assumed
V O2max to remain constant for the studies duration.

11.6 Future directions

In conclusion, the research included in this thesis showed that machine learning
techniques can be used to normalize and contextualize physiological data in ei-
ther laboratory or unsupervised free-living conditions. By determining multiple
levels of contexts we showed that personalized EE estimation and V O2max esti-
mation using contextualized physiological data are both possible in unsupervised
free-living settings. Therefore, higher accuracy could be obtained in EE estima-
tion and V O2max estimation, compared to previous efforts, with consistent error
reductions ranging between 10% and 33%.

We see the following as main future directions that could be built upon the
methods included in this thesis:

• Physiological deviations from a person’s baseline: The proposed context
recognition framework, including low and high level activity recognition,
could be used to first establish a person’s physiological signals baseline in
different contexts, and then detect physiological signals deviations from a
person’s baseline. Basically, by determining the distribution of physiolog-
ical data in different contexts (e.g. the distribution of HR data of an indi-
vidual while doing a certain activity in a certain place), deviations from a
persons’s normal values could be detected. Example applications could be
psychological stress detection, by determining when physiological data (e.g.
higher HR or lower HRV) is consistently far from a person’s baseline val-
ues. As a result, personalized alarms or coaching could be delivered, since
a person’s values would not be compared to population-based parameters
but only to the person’s history. Another application relying on the same
framework could be early detection of health issues that often translate in
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physiological changes from a person’s baseline (or normal) values, such as
for example heart failure patients who’s physiological signals change well
before exacerbations.

• Hierarchical modeling for implicit physiological signal normalization: In
this thesis we showed how using a hierarchical Bayesian approach where
the factor influencing individual differences (i.e. CRF) between the outcome
variable (i.e EE) and the predictor variable (i.e. HR) was placed at the sec-
ond level of the hierarchical structure, therefore providing more accurate es-
timates. The reason being that the different relation between predictor (HR)
and outcome variable (EE) due to CRF was accounted for by letting the HR
coefficient depend on the second level predictor, CRF (i.e. the relation be-
tween HR and EE is controlled by level of CRF). The same approach could
possibly be used to reduce error in other applications with consistent dif-
ferences between individuals. For example, for physiological data, another
application could be psychological stress detection, which also can rely on
HR. However the relation between HR and psychological stress is different
in different individuals, and using a hierarchical model with as group level
predictors variables controlling the relation between HR and stress, could
improve stress estimation/detection at the individual level.

• Context recognition: As context recognition used to contextualize physio-
logical data we relied on supervised methods for low level activity detec-
tion and topic models for high level unsupervised activity discovery. The
proposed method could be extended by exploring other ways to determine
high level activities, unsupervisedly. For example, by using convolutional
neural networks, which could be fed with low level raw data and would au-
tomatically build high level abstractions of the user’s behavior, similarly to
topic models. Another alternative could be to use methods requiring user’s
interaction, such as active learning, to further expand and personalize the
detected context.

• Healthy living: From a clinical or consumer application perspective, the link
between V O2max and reduced risk of disease could be exploited to develop
new applications built on the thesis results. For example, targeting behav-
ioral change by closing the feedback loop between activity behavior (or EE)
and estimated fitness (CRF). Providing users or patients with insights on
how their activity behavior and lifestyle influences their health status, as
estimated by CRF. To this aim, the V O2max estimation should first be vali-
dated longitudinally, to determine if the models proposed in this work are
not only able to provide accurate V O2max estimation at the cross-sectional
level, but also longitudinally within one individual with a varying physical
activity behavior (e.g. taking up a more active lifestyle).
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