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Personalization of Energy Expenditure Estimation
in Free Living Using Topic Models

Marco Altini1, Pierluigi Casale2, Julien Penders2 and Oliver Amft3

Abstract—We introduce an approach to personalize energy
expenditure (EE) estimates in free living. First we use Topic Mod-
els (TM) to discover activity composites from recognized activity
primitives and stay regions in daily living data. Subsequently, we
determine activity composites that are relevant to contextualize
heart rate (HR). Activity composites were ranked and analyzed to
optimize the correlation to HR normalization parameters. Finally,
individual-specific HR normalization parameters were used to
normalize HR. Normalized HR was then included in activity-
specific regression models to estimate EE. Our HR normalization
minimizes the effect of individual fitness differences from entering
in EE regression models. By estimating HR normalization param-
eters in free living, our approach avoids dedicated individual
calibration or laboratory tests. In a combined free-living and
laboratory study dataset, including 34 healthy volunteers, we
show that HR normalization in 14-day free living data improves
accuracy compared to no normalization and normalization based
on activity primitives only (29.4% and 19.8% error reduction
against lab reference). Based on acceleration and HR, both
recorded from a necklace, and GPS acquired from a smartphone,
EE estimation error was reduced by 10.7% in a leave-one-
participant-out analysis.

Index Terms—Context, Energy Expenditure, Heart Rate, Topic
Models

I. INTRODUCTION

Wearable technology can provide novel insights on the
relation of physical activity (PA) and health [1]. Energy expen-
diture (EE) is the most common parameter used to quantify
PA [2], and is typically estimated using acceleration and heart
rate (HR) sensors [3], [4]. Acceleration reflects a relation
between motion and EE while HR shows a strong correlation
with EE via the relation of EE and oxygen consumption. State-
of-the-art EE estimation methods first classify user activity and
subsequently apply activity-specific regression equations, to
estimate EE [5], [6], [7]. Using HR in activity-specific regres-
sion equations showed consistent improvements in EE estima-
tion compared to using acceleration only [8], [9]. However,
HR during an activity is specific to a person since it depends
on the individual’s cardiorespiratory fitness (CRF) level [10].
To derive a reliable EE estimate, it is therefore necessary to
normalize HR according to an individual’s fitness. In turn,
the normalized HR could serve as independent variable in EE
regression models. Normalizing HR requires information on
the individuals’ fitness level, as fitness and HR are tightly
related for a given workload [11]. Thus, in our previous work
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we predicted a surrogate of fitness, i.e. the HR while running
at 9 km/h, and used it as HR normalization parameter to
reduce EE estimation error [8]. As a proof of concept for
HR normalization which does not require intense activities
to be performed in laboratory settings, we estimated the HR
while running at 9 km/h from the HR during low intensity
activities. In particular, we defined a regression model using as
predictors the HR while walking at a certain speed. However,
our validation was performed in laboratory settings.

HR interpretation in free living is more complex. While for
an individual any specific lab-performed activity may show
little variation in HR, HR in free living is likely depending on
context. The presence of various daily life stressors requires a
novel estimation approach compared to laboratory studies. In
particular, we assume that HR in free living is not only affected
by activity primitives such as walking, but by a combination
of activity primitives and more abstract activity composites
such as social interactions, doing sport, etc. Thus, to exploit
HR normalization for EE estimation in free living, activities
must be recognized and interpreted according to the situation
in which they were performed.

In this work, we present a method to derive HR normaliza-
tion parameters during free living and personalize population
based EE estimation models accordingly. In particular, our
contribution is three-fold:

1) We define HR normalization parameters as surrogates
of fitness levels estimated by contextualized HR. We
contextualize HR in free living with a combination
of activity primitives, activity composites and walking
speeds. We use HR normalization parameters to normal-
ize HR and estimate EE more accurately at the individual
level.

2) We present a framework to discover activity composites
in free living, and determine which activity composites
are more suitable for HR normalization. To discover
activity composites we first utilize topic models (TM).
Secondly, we determine relevant activity composites by
ranking activity composites and analyzing the relation
between ranked activity composites and HR normaliza-
tion parameters across individuals.

3) We evaluate our approach in a combined free-living
and laboratory study, including 34 participants. A labo-
ratory protocol was used to obtain reference data for
activity primitives and HR normalization. A 14-day
free-living protocol was used to evaluate the estimation
performance for HR normalization and personalization
of EE estimation, yielding a 10.7% error reduction in
EE estimation.
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II. RELATED WORK

Accelerometer and HR monitors are the most commonly
used devices for EE estimation [3], [4]. The latest EE esti-
mation algorithms extend approaches based on simple linear
regression models by splitting the estimation process into
two phases. First, an activity is recognized. Secondly, an
activity-specific regression model is used to predict EE [5], [6],
[7]. Including HR data in the activity-specific linear models
showed consistent improvements in EE estimation accuracy
compared to algorithms using accelerometer only data [8],
[9]. However, breaking down the EE estimation process into
activity-specific sub-problems is not sufficient to take into
account the different relation between HR and EE in different
individuals [8]. Fig. 1 shows how participants with similar
body weight consume similar amounts of energy. However,
the different CRF level results in very different HR, but no
difference in metabolic responses [10]. Thus, estimating EE
based on HR results in under and overestimations [8], [12].

A. Personalized EE Estimation

HR showed higher correlation with EE compared to ac-
celerometer data [12]. However, subject-independent models
including HR performed sub-optimally, confirming the need
for individual calibration [12]. Individual calibration limits
practical applicability, since the individual relation between
HR and EE needs to be determined for the algorithm to be
accurate. To the best of our knowledge, the only attempt
to automatically normalize HR without requiring individual
calibration was reported by our group. In [8], we introduced an
approach to normalize HR by estimating a HR normalization
parameter. A regression model including HR measured during
activities of daily living simulated in the lab (e.g. walking) was
used to estimate HR during intense exercise, such as running
at 9 km/h. The estimated HR was used as the HR normaliza-
tion parameter. While EE estimation error was reduced by the
proposed methodology, we used laboratory recordings only to
build our models. Supervised recordings allowed us to acquire
data free of artifacts due to other daily life stressors, which
was a necessary first step to prove the effectiveness of our
approach. However, the presence of a multitude of stressors
in free living urges for a different solution.

B. Context Recognition

Our assumption is that physiological data, for example
HR, in free living settings is not only affected by activity
primitives, but by both activity primitives and activity com-
posites. Incorporating contextual information beyond activity
primitives could potentially improve interpretation of HR or
other physiological data in free living. Fig. 2 shows HR
during activity primitives and activity composites performed
in free living by one participant. HR during the same activity
primitives changes depending on the activity composites. For
example, HR during social interactions (plot b) is higher than
during work (plot a) for both sedentary and walking activity
primitives. Variations in HR can be noticed in different activity
composites, and motivate the need for additional contextual

Fig. 1. Relation between EE and HR in two participants during walking
and running activity primitives. a) Absolute EE levels are similar due to
similar body weight. b) HR differs between participants due to different CRF
level (V O2max participant 1 is 2104 ml/min, V O2max participant 2 is 3130
ml/min). Thus, EE estimation based on HR would cause large individual error.

information when interpreting HR data. Activities are often
thought of in a hierarchical manner, starting from low level
activity primitives, and building up to more complex activity
composites [13]. Activity primitives are typically considered
as a set of atomic activities that can be determined on a short
time window [6], directly from low level raw sensor data.
Atomic activities can be obtained using supervised machine
learning methods, across a wide population. An example of
activity primitives can be a set of postures and locomotion
activities, such as: lying down, sedentary, dynamic, walking,
biking and running, as adopted in previous research [5], [7].
On the contrary, higher level contextual information, such as
activity composites, can benefit from a different recognition
approach. Activity composites (e.g. social interactions, com-
muting, etc.) are personal and need unsupervised methods able
to discover different patterns in each individual, depending
on their behavior. A possible solution is the use of TMs.
TMs were initially introduced by the text mining community,
to discover topics from corpus of documents, starting from
words [14]. For activity recognition, the same concept was
applied to discover activity composites from activity primi-
tives [13]. Recent work investigated the impact of multiple
latent Dirichlet allocation (LDA) parameters for activity com-
posites discovery, showing promising results [15]. In this work,
we identified activity composites that are representative of HR
normalization parameters in a unsupervised manner. To this
aim, we introduced the concept of relevant activity composites.
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Fig. 2. HR during activity primitives and activity composites performed in
free living by one participant. Activity composites were manually annotated by
the participant. HR during the same activity primitives changes substantially
depending on the activity composites: a) work, b) social interactions.
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III. METHODS

We include HR in activity-specific EE estimation models
after being normalized by the HR normalization parameter,
HRnp. HRnp was predicted from HR while walking at a
recognized speed, only during relevant activity composites.
Relevant activity composites are activity composites in which
HR is representative of HRnp, and were derived during
training phase. We first utilized topic models (TM) to derive
activity composites. Then, we determined relevant activity
composites by ranking activity composites and analyzing the
relation between ranked activity composites and HR normal-
ization parameters across individuals, as described in Sec.
III-B. Following a top down approach, EE was estimated by
activity-specific models (see Fig. 3). For each activity primitive
ci, a regression model is defined:

C = {c1, . . . , ccn}, ∀ci ∈ C,

∃ yacti = Xactiβacti + ε (1)

Xacti = {Xacci , Xanti , Xhri}

where we assumed cn activity primitives C, recognized by
a combined Support Vector Machine (SVM) classifier and
Hidden Markov Models (HMM). Input for the SVM classifier
are accelerometer features Xacc. The HMM is used to smooth
transitions over the SVM output by defining the hidden states
as the actual activity primitives ci. For an activity primitive ci,
yacti is the dependent variable, the vector of target EE values,
β is the vector of regression coefficients, and Xacti is the
vector of input features. Features Xacti used in the activity-
specific regression models can be grouped into accelerometer
features Xacci , anthropometric characteristics Xanti , and nor-
malized HR, Xhri , as shown in Fig. 3.

A. HR Normalization Parameter Estimation

Normalized HR was obtained as shown in Fig. 3 by dividing
HR by person-specific HR normalization parameters HRnp.
In turn, HRnp was estimated from contextualized HR data
HRctx∗ in free living:

Xhr =
HR

HRnp
(2)

HRnp = HRctx∗βnp + ε (3)

Fig. 3. Proposed approach to personalized EE estimation. HR data HR
were normalized by the HR normalization parameter HRnp, resulting in the
normalized HR Xhr , before being used in activity-specific EE models.

Fig. 4. Proposed approach to determine the HR in a specific context HRctx∗,
i.e. HR while walking at a certain speed during relevant activity composites,
and estimate the HR normalization parameter HRnp. Activity primitives c
and stay regions sr are determined from accelerometer features Xacc and
GPS coordinates Xcoo. LDA uses activity primitives and stay regions to
discover a set of activity composites, which are ranked, determining relevant
activity composites. Finally, a regression model is used to estimate the HR
normalization parameter HRnp from contextualized HR, HRctx∗.

HRctx∗ refers to HR data in a specific context, e.g. HR
while walking at a certain speed during relevant activity
composites. Activity composites were discovered using LDA.
LDA is a generative probabilistic model which discovers
K activity composites, from S time windows of N words
yn. Words yn were stay regions and activity primitives (see
Sec. V). According to the generative process, for each word
yn, we first draw the activity composite zn. Each assigned
activity composite z ∈ 1 : K is derived from a multinomial
distribution defined by the parameter θs. θs is the distribution
over activity composites for time window s:

θs ∼ Dir(α) 1 ≤ s ≤ S (4)

zn ∼ Mult(θs) 1 ≤ s ≤ S, 1 ≤ n ≤ N (5)

LDA defines θs as a Dirichlet distribution with hyperparam-
eter α. Then, another multinomial is used to choose a word
yn, conditioned on the activity composite zn, p(yn|zn):

yn ∼ Mult(βzn) 1 ≤ n ≤ N (6)

Where β is defined as the probability of each word
n ∈ 1 : N for topic z. The joint distribution can be
specified as:

p(y, z, θ, φ|α, β) =

S∏
s=1

∫
p(θs, α)

N∏
n=1

K∑
z=1

p(zsn|θs)p(ysn|zsn, β)dθs (7)

We were interested in estimating the distributions of the
parameter θs. Multiple activity composites were derived by
LDA in each time window s, each activity composite being
assigned a probability. For each time window we considered
only the activity composite maximizing θs, which we selected
as the window’s main activity composite zs.



4

B. Relevant Activities Composites
During the training phase, we defined a feature selection

method to determine which activities composites to use as
relevant activity composites. The HR while walking at a certain
speed was computed for each main activity composite zs and
participant par, resulting in the matrix HRctx. HRctx is of
dimension K × npar, where K is the number of activity
composites z, and npar is the number of participants par.
One column of the matrix HRctx, i.e. contextualized HR
for one participant across activity composites, is shown in
Fig. 6.b. LDA-derived activity composites do not include
semantics and cannot be compared across participants. To
overcome the problem of comparing activity composites, our
feature selection method ranks activity composites using a
features set T . For example, T1 ∈ T could be the total time
spent in each activity composite, as shown in Fig. 6. Then,
HRctx is ranked by feature T1, allowing us to investigate
the relation between the HR in different activity composites
and HRnp, across participants. The ranking orders HRctx by
values of T from maximum to minimum, as shown in Fig.
6.c. Since we were interested in highlighting commonalities
between activity composites, ranked HRctx were smoothed
by a moving average of m elements over activity composites,
resulting in HRctx (see Fig. 6.d). We conclude the training
phase by determining which feature in T maximizes Pearson’s
correlation between HRctx and HRnp. We define the vector
of correlations rT for a set of TN features:

rT = {rrankT1
, . . . , rrankTN

}, (8)

rranki = r(HRctxpar={1,...,npar},i , HRnppar={1,...,npar}) (9)

Where rranki is the correlation between the vector HRctx
and HRnp, among all participants par for a feature Ti. The
feature Ti = max rT showing the highest correlation between
HRctx and HRnp was chosen as indicative of which activity
composites are such that HR is more representative of fitness
levels, i.e. relevant activities composites. For new participants,
the function f in Fig. 4 ranks HRctx based on the feature Ti
maximizing the correlation on our training set, and determines
HRctx∗. HRctx∗ is the HR while walking at a certain speed
during relevant activities composites. Thus, HRctx∗ is the
first element of the vector of ranked and smoothed HR,
HRctx. Once determined, HRctx∗ is used to estimate the HR
normalization parameter HRnp and normalized HR, as shown
in Eq. 2 and 3.

Fig. 5. ECG Necklace, the wearable sensor used to collect accelerometer
and ECG data in this study. The ECG Necklace was worn during laboratory
protocols and free living recordings close to the body’s center of mass
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Fig. 6. Exemplary diagram of our approach to discover relevant activity
composites for the case of walking at 5.5 km/h. a − b) Walking speed ys,
activity primitives c and activity composites z are used to determine HR in
specific contexts, HRctx. c) HRctx are ranked by activity composite feature
T1, the total time spent in each activity composite. Bars in plot b) indicate
values for T1 in each activity composite, while numbers are average HR
while walking at 5.5 km/h for each activity composite. d) Ranked HRctx

were smoothed by a moving average of m = 2 elements. e) HRctx across
participants are correlated with the HR normalization parameter HRnp in the
training dataset. f). The feature Ti maximizing the correlation is chosen to
select relevant activity composites.

IV. EVALUATION STUDY

A. Participants and Data Acquisition

Participants were 34 (14 male, 20 female), mean age
23.7 ± 2.5 years, mean weight 66.3 ± 10.6 kg, mean height
172.4 ± 8.3 cm, mean BMI 22.2 ± 2.5 kg/m2 and mean
V O2max 3002.9 ± 665.0 ml/min. Written informed consent
was obtained, and the study was approved by the ethics
committee of Maastricht University. The sensor platform used
was the ECG Necklace, which was configured to acquire
one lead ECG data at 256 Hz, and three-axial accelerometer
data at 32 Hz (see Fig. 5). The ECG Necklace was worn
close to the body’s center of mass, thus in an ideal location
for EE estimation, as reported in literature [7]. The ECG
Necklace was worn during laboratory protocols and free living
recordings. Additionally, during free living each participant
carried a Samsung Galaxy S3 used to record GPS coordinates
at 5 minutes intervals. During laboratory recordings partici-
pants were equipped with a indirect calorimeter analyzing O2
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consumption and CO2 production (Oxycon-β), from which
EE was derived [16]. V O2max was determined during an
incremental test on a cycle ergometer [17]. Activity composites
were manually annotated by the participants on a diary, while
activity primitives were annotated during laboratory protocols
by the experimenter. The dataset acquired contains about 363
days of data collected from 34 subjects in free living, including
accelerometer, ECG and GPS data plus 72 hours of laboratory
recordings including reference V O2 and V CO2 for validation
of EE estimation.

B. Experiment Design and Validation Procedure

We collected data in free living and laboratory settings.
Free living data was used to learn the normalization parameter
HRnp using the proposed method, which combines activity
primitives and relevant activity composites to contextualize
HR. The proposed approach is referred to as combined. Then,
activity-specific EE estimation models including normalized
HR as a predictor were validated in laboratory settings using
reference calorimeter data.

We evaluated the proposed approach in estimating HRnp
against two other approaches: a) no-context: HR in free living
is used directly to estimate HRnp, b) low level: HR in free
living is contextualized using activity primitives and walking
speed and used to estimate HRnp.

EE estimation using HR normalized by the proposed ap-
proach was also evaluated against two other approaches: a) no-
normalization: EE was estimated by activity-specific models
using as predictors non-normalized HR, accelerometer and
anthropometrics data, b) low level: EE was estimated by
activity-specific models using as predictors normalized HR,
accelerometer and anthropometrics data. For the low-level
approach HR was normalized by HRnp and HRnp was
determined using activity primitives and walking speed only,
but no activity composites.

Two laboratory protocols were designed and implemented
for each participant on two separate days to avoid the maximal
fitness test to affect physiological parameters during less
intense activities and vice versa.

1) Laboratory Protocols: Participants reported at the lab on
three separate days and after refraining from drinking, eating
and smoking in the two hours before the experiment. Two
laboratory protocols were performed. The first protocol in-
cluded simulated activity primitives performed while wearing
a portable indirect calorimeter, to acquire reference EE data.
Activities included: lying down, sitting, sit and write, standing,
cleaning a table, sweeping the floor, walking (treadmill flat at
2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 km/h) and running (treadmill flat
at 7, 8, 9, 10 km/h). Activities were carried out for a period of
at least 4 minutes. The second protocol was a V O2max test
providing reference data for biking and EE while biking. The
third day was used for anthropometric measurements including
the participant’s body weight, height and body fat. Body fat
was assessed using doubly labelled water [18].

2) Free living Protocol: Participants worn the ECG neck-
lace for 14 consecutive days in free living and manually
annotated their activities composites (high level activities

such as going to work, sleeping, etc.). Participants carried a
Samsung S3 phone and were instructed to charge both the
ECG Necklace and phone and to change electrodes daily.

3) Statistics and Performance Measures: Models were val-
idated using leave one participant out cross-validation. The
procedure was repeated for each participant and results were
averaged. Thus, data used for model building was not used
for model validation. LDA parameters were derived on data
from each participant to be validated, since no reference
or training set are necessary. Performance of the activity
recognition models was evaluated using the class-normalized
accuracy. Results for HR normalization parameters estimation,
walking speed estimation and EE estimation are reported in
terms of Root-mean-square error (RMSE), where the outcome
variables were HR in bpm, speed in km/h and EE in kcal/min
respectively.

V. IMPLEMENTATION

A. Features Extraction and Selection

Accelerometer data were segmented in 5 s windows, band-
pass filtered between 0.1 and 10 Hz, to isolate the dynamic
component due to body motion, and low-pass filtered at 1
Hz, to isolate the static component, due to gravity. Features
Xaccwere derived and selected based our previous work [19],
using a different dataset. Selected features were: mean of the
absolute signal, inter-quartile range, median, variance, stan-
dard deviation, main frequency peak, low and high frequency
band signal power. HR was extracted from RR intervals,
computed over 15 seconds.

B. Activity Primitives

Laboratory activities were grouped into six clusters ci
to be used for classification of activity primitives. The six
clusters were lying (lying down), sedentary (sitting, sit and
write, standing), dynamic (cleaning the table, sweeping the
floor), walking, biking and running. Activity primitives were
derived combining a SVM and HMM. For the SVMs, we
used a gaussian radial basis kernel (C = 1). The HMM is
defined by parameters λ = (π,A,B). π is the vector of
probabilities of each state (i.e. low level atomic activity) to be
the initial state, A is the transition probability matrix, defining
the probability of transitioning between one activity to the
other at time interval t. Thus, the HMM states correspond to
activity primitives. B is the emission matrix, which defines the
probability of getting an emission at time t, given the state. We
implemented the emission matrix B as bij = 0.5 ⇐⇒ i = j,
bij = 0.1 ⇐⇒ i 6= j, while transitions probabilities A
between actual states were derived from training data. Training
data was the SVM classification result obtained with reference
activity primitives manually annotated in laboratory settings.

C. Walking Speed

Features for the linear regression model used to estimate
walking speed were: mean of the absolute signal, inter-
quartile range, variance, main frequency peak, high frequency
band signal power and height, as derived by linear forward
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Fig. 7. Exemplary stay regions detection from noisy GPS data for one
participant. Small dots represent all recorded GPS data points, while bigger
dots represent detected stay regions.

selection [8]. Free living walking speeds used to contextualize
HR were 4.5 km/h (4 to 5 km/h range) and 5.5 km/h (5 to 6
km/h range) since speeds close to this values were reported in
healthy individuals (5.3 km/h in [20] and 5±0.8 km/h in [21]).

D. Stay Regions

Stay regions were computed from GPS data Xcooaccording
to time and distance thresholds, which were set to 60 minutes
and 1 km according to previous literature [22]. The time
threshold ensures that each stay region is a location where
the participants spent a substantial amount of time, while the
distance threshold ensures that noisy recordings do not result
into a multitude of stay regions being detected. GPS data was
collected at 5 minutes intervals to conserve battery power. The
relatively wide distance and time thresholds were chosen due
to the low frequency of the GPS recordings. An example of
stay region detection for one participant is shown in Fig. 7.

E. Relevant Activity Composites Discovery

Input primitives for LDA were occurrences histograms of
stay regions and activity primitives in time windows s. LDA
hyperparameter α was set to 0.01, while segment size and
number of activity composites K were set to 15 minutes and
20 topics respectively, based on results obtained in previous
research [15]. Parameters were optimized using an implemen-
tation of the variational expectation-maximization algorithm
proposed in [14]. The function f (see Fig. 4) translates LDA-
derived activity composites into relevant activity composites
by first determining the most probable activity composites
in each time window s, as expressed by the parameter θ.
Secondly, HR during activity composites HRctx was ranked
according to features T , including amount of time spent in
each activity composite, amount of time spent in each activity
primitive with respect to the total time spent performing the
activity and percentage of time spent in each activity primitive
per activity composite. Features were chosen to be computed
across participants and activity composites regardless of the
participant lifestyle or activity composite semantics, while

possibly providing information about which activity composite
might retain more of the relation between HR and HRnp.
Ranking of HRctx values was smoothed by a moving average
of 5 elements. Ranked and smoothed HRctx were correlated
with HRnp to determine which activity composites features
were more representative of HRnp.

F. HR Normalization Parameter Estimation

We chose the HR while running at 9 km/h as the HR
normalization parameter HRnp to estimate in free living. Our
choice was motivated by previous laboratory results reported
by our group [8] as well as others [6], showing that HR
normalized by the HR while running at 9 km/h highly reduces
variability between participants. A linear regression model
was built to predict HRnp using as independent variable the
HR while walking at 4.5 km/h or 5.5 km/h during relevant
activity composites, HRctx∗. We also implemented the models
listed in Sec. IV-B3 as benchmarks for the proposed approach
(referred to as combined).

G. Personalized EE Estimation

EE was estimated by first classifying the activity performed
among the ones listed in Sec. V-B and then applying an
activity-specific EE linear regression model. The activity-
specific EE linear models used anthropometric characteristics,
motion intensity and HR as predictors. For the proposed
approach, HR was normalized by the HR normalization pa-
rameter HRnp, as estimated using HR contextualized by
activity primitive and relevant activity composites. We also
implemented the models listed in Sec. IV-B3 as comparisons
for the proposed approach, thus estimating EE using non-
normalized HR (no-normalization) and HRnp estimated using
HR contextualized by activity primitive only (low level).

Fig. 8. Exemplary walking speed estimation and activity primitives recog-
nition for one participant. Activities were manually annotated and performed
sequentially. Improvements in activity primitives recognition using a combined
SVM-HMM compared to a single SVM are shown in plots b and c.
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Fig. 9. a) RMSE for walking speed models across the speed range used to
contextualize HR in free living. b) Percentage error across the same speeds.

VI. RESULTS

A. Activity primitives and speed

Accuracy of the SVM-HMM activity recognition classifier
was 92.3%. More specifically, the accuracy was 94.4% for
lying, 96.7% for sedentary, 77.6% for dynamic, 96.3% for
walking, 93.3% for biking and 95.5% for running. Walking
speed estimation RMSE was 0.38 km/h. Results for walking
speed estimation across the speeds used to contextualize HR in
free living are shown in Fig. 9, while an exemplary output of
the activity primitives recognition classifier and walking speed
estimation model is shown in Fig. 8.

B. HR normalization parameter

An example of LDA-derived activity composites is shown
in Fig. 6. Activities composites were ranked according to
the features listed in Sec. V-E. The feature Ti maximizing
the relation between HRnp and ranked HRctx was total
time spent in each activity composite, resulting in correlation
r = 0.73. Correlation between HRnp and mean HR in free
living (no-context) was r = 0.46 while correlation between
HRnp and mean HR while walking in free living (low level)
was r = 0.53 for walking at 4.5 km/h and r = 0.55 for
walking at 5.5 km/h. HRnp estimation resulted in RMSE of
13.8 bpm for no-context, 13.2 bpm for low level when data
while walking at 4.5 km/h was used, and 12.6 bpm for low
level when data while walking at 5.5 km/h was used. For the
proposed approach (combined), RMSE was reduced to 11.1
bpm and 10.1 bpm when using data while walking at 4.5
km/h and 5.5 km/h respectively. Thus, the proposed approach
provided 29.4% and 19.8% error reduction in estimated HR
compared to no-context and low level. Including data while
walking at higher speed (i.e. 5.5 km/h) provided the best
results. Fig. 10 shows the relation between measured and
predicted HRnp for the different cases considered in this work.

C. EE estimation

EE estimation results are shown in Fig. 11. Benchmark for
this analysis were state of the art activity-specific EE estima-
tion models including accelerometer and non-normalized HR
data, (no-normalization), resulting in RMSE of 0.84 kcal/min.
RMSE was reduced from the no-normalization condition
to 0.79 kcal/min (6.4% error reduction) for low level and
to 0.75 kcal/min (10.7% error reduction compared to no-
normalization, p = 0.007 and 4.6% error reduction compared
to low level, p = 0.037 ) for combined, the proposed approach.
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Fig. 10. a,c,e) Relation between measured and estimated HR normalization
parameters for the three conditions compared in this work: a) no-context,
c) low level, e) combined. b,d,f) Residuals plots for the three conditions
compared in this work: b) no-context, d) low level, f) combined. For low
level and combined, only data while walking at 5.5 km/h was used, as it
provided the optimal results (see Sec. VI-B).

We provide detailed results for moderate to vigorous activities
only, since personalizing the relation between HR and EE is
mostly not useful during sedentary activities [12]. EE RMSE
was reduced from 0.55 kcal/min to 0.53 kcal/min for walking
(4.2% error reduction), from 2.34 kcal/min to 1.92 kcal/min
for biking (18.0% error reduction) and from 1.12 kcal/min to
1.03 kcal/min for running (8.0% error reduction) using the
proposed approach, compared to no-normalization.

VII. DISCUSSION

In this paper, we proposed an approach to estimate HR
normalization parameters during free living. Then, we used
the normalization parameters to normalize HR and reduce
EE estimation error compared to population-based models
obtained in laboratory conditions. The effectiveness of HR
normalization parameters in reducing EE estimation error has
been shown in previous literature [8], [12], [6]. However,
to the best of our knowledge, this is the first work which
estimates person-specific HR normalization parameters using
unsupervised recordings in free living.

The presence of a multitude of stressors in free living
required a different solution from what was introduced in
laboratory settings. Our hypothesis was that HR in free living
is not only affected by low level activity primitives - as shown
in the lab - but by both activity primitives and high level
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Fig. 11. EE estimation RMSE and standard errors for a) all activities
averaged, b) walking c) running and d) biking. Three models are compared,
No-normalization, Low Level: HR was normalized using a normalization
factor predicted from HR while walking at 5.5 km/h, and Combined, i.e. the
proposed approach, normalizing HR using a normalization factor predicted
from HR while walking at 5.5 km/h during relevant activity composites.

activities composites. Thus, incorporating contextual infor-
mation beyond activity primitives could potentially improve
interpretation of HR in free living. Our results confirm the
importance of activity composites in interpreting HR data in
free living. HR normalization parameter estimation RMSE was
reduced by 29.4% compared to average free living HR - i.e. no
context - when using the HR while walking at 5.5 km/h during
relevant activity composites as predictor. On the other hand,
when HR normalization parameters were estimated using low
level context information only, i.e. the HR while walking at
5.5 km/h across all activity composites, RMSE was reduced by
8.7% only compared to no context. We evaluated the proposed
approach for a wide range of walking speeds, from 4 to 6 km/h,
and found that higher speeds resulted in better results.

We translated the need for high level contextual information
into a recognition framework and introduced the concept
of relevant activity composites. Relevant activity composites
are activity composites in which HR is more representative
for HR normalization parameters. While supervised methods
have been introduced in literature to determine high level
activity composites, these methods require to know in advance
what high level activity composites will be performed by the
participants, as well as sufficiently annotated data to train
models. Most importantly, supervised methods assume every
participant to perform the same activity composites, which
is unlikely in free living. Our unsupervised approach relies
on TM, in particular LDA, to discover activity composites.
To determine which activity composites will be used to esti-
mate HR normalization parameters, our method ranks activity
composites depending on different features. Our approach
thus discovers activity composites, which may differ for each
participant, depending on their lifestyle. However, discovered
activity composites do not provide semantics and compar-

ison between participants is challenging. Typically, activity
composite of interest are isolated and further classified using
supervised methods [13], [15], thus requiring prior knowledge
of the activity composites to discover, effectively limiting
the unsupervised nature of the method. Ranking allowed for
comparison of activity composite specific features (e.g. total
time spent in each activity composite) across participants, even
if activity composites were different and without semantics.
Thus, making the relevant activity composite discovery ap-
proach unsupervised and generalizable to new participants. In
particular, we found a strong relation between the total time
spent in each activity composite and the HR normalization
parameter. A possible explanation is that activity composites
in which people spend most of their time are typically rep-
resentative of a stable physiological condition, which might
be more representative of their fitness level. On the contrary,
infrequent or more intense activity composites might involve
more physiologically stressful situations as well as intermittent
HR, causing cardiovascular responses which are not reliable
for HR interpretation [23]. While our method determines
activities which are best suited for HR normalization, the role
of other factors affecting HR, for example emotional stress
or illness, could not be directly evaluated, due to lack of
reference. Future work could explore the relation between
relative activity composites and external factors such as stress,
to further validate the effectiveness of the proposed approach
in determining high level context useful for EE estimation.

Free living recordings were used to determine HR nor-
malization parameters unsupervisedly and without requiring
any individual calibration or laboratory tests. However, the
effectiveness of the estimated HR normalization parameters
in reducing EE estimation error were validated in laboratory
settings. Double labelled water (DLW) is the only recognized
method to obtain reference EE in free-living [24], [25]. How-
ever, DLW reports only total EE after a period of one or two
weeks. Thus, DLW is not informative in terms of minute-by-
minute EE estimation accuracy. An EE estimation model that
would consistently overestime light activities and consistently
underestimae intense activities could perform optimally ac-
cording to DLW, due to an averaging of multiple errors. Thus,
we validated our approach using laboratory data and reference
indirect calorimetry, since only under these conditions we can
acquire minute-by-minute EE reference for different activities,
and evaluate the models’ accuracy. Similarly, we could evalu-
ate activity recognition and walking speed models only under
laboratory conditions, where reference is present. The dynamic
activity cluster was recognized with accuracy below average.
We interpret that activities with high variability in movement
and execution between participants and using a single chest-
worn sensor resulted in higher classifier confusions. However,
the high accuracy of walking speed estimation models and
activity recognition for walking provide confidence for the
free-living detection of activities used to contextualize HR.

We believe our approach is a substantial step towards
personalized health and wellbeing monitoring. The proposed
system learns automatically from the user over time, col-
lecting accelerometer, HR and GPS data while performing
activities of daily living unsupervisedly. Recent developments
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in wearable and mobile technology provided sensors and
phones able to collect and process data continuously and
unobtrusively [26]. Our methodology, could be applied to
such systems to determine the HR normalization parameter, a
coefficient representative of the fitness level of an individual.
By normalizing HR using the estimated HR normalization
parameter, EE estimation can be personalized. Our results
show that RMSE was reduced by 10.7% on a dataset of
participants with high variability in fitness level, using cross-
validation.

We expect that the HR normalization approach will be most
useful to individuals willing to take up a more active lifestyle,
or undergoing a physical activity intervention targeted in mod-
ifying behavior to increase level of activity. The importance
of CRF and its influence on HR is particularly relevant for
individuals transitioning from inactive to active lifestyle. HR
normalization provides optimal results for moderate to vigor-
ous activities, especially the ones where accelerometer data is
not indicative of EE due to lack of whole body movement (as
shown by the highest reduction in RMSE for EE estimation
when biking, 18.0%). Other activities such as rowing, walking
uphill, etc. would most likely benefit as well, due to the
inability of accelerometers alone to estimate EE accurately.
The proposed EE estimation approach will be useful for sports
training devices, where users and trainers are interested in
accurate EE estimation under moderate to vigorous workloads.
However, using low intensities activities, such as walking at
preferred speeds in healthy individuals [20] , [21] we aim
at providing accurate EE estimation in daily life across the
general population. The proposed algorithms can adapt to
individual fitness level and high level activity composites. The
proposed approach could be used to guide in healthy lifestyle,
by providing more accurate EE estimation at the individual
level.
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