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Abstract. In this paper we propose a generic approach to reduce inter-

individual variability of different physiological signals (HR, GSR and respiration) by

automatically estimating normalization parameters (e.g. baseline and range). The

proposed normalization procedure does not require a dedicated personal calibration

during system setup. On the other hand, normalization parameters are estimated at

system runtime from sedentary and low intensity Activities of Daily Living (ADLs),

such as lying and walking. When combined with activity-specific EE models, our

normalization procedure improved EE estimation by 15 to 33% in a study group of

18 participants, compared to state of the art activity-specific EE models combining

accelerometer and non-normalized physiological signals.
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1. Introduction

Currently, epidemiologists use accelerometers and Heart Rate (HR) monitors to

objectively gather information about Energy Expenditure (EE) (Assah et al 2010,

Ceesay et al 1989, Crouter et al 2006, Ekelund et al 2001). Different methods to EE

estimation have been developed in the past, from counts-based estimation methods to

activity-specific EE equations, developed using one or more wearable sensors. Activity-

specific models consistently showed higher performance compared to single models

(Altini et al 2012, Bonomi et al 2009, Ruch et al 2013, Rumo et al 2012, Tapia 2008).

For EE estimates, the inclusion of physiological signals such as HR, Galvanic

Skin Response (GSR), respiration, skin temperature or humidity, in combination with

accelerometers, consistently provided better results than accelerometers alone (Altini

et al 2012, Brage et al 2007, Smolander et al 2008, Welk et al 2007). However,

inter-individual differences in physiology, as well as the consequent need for individual

calibration, limit accuracy and practical applicability of such systems (Altini et al 2013a,
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Brage et al 2007, Ceesay et al 1989). Breaking down the EE estimation process into

activity-specific sub-problems is not sufficient to take into account the different relation

between physiological signals and EE in different individuals. A method is needed to

automatically normalize physiological signals without requiring individual calibration

and fully exploit the relation between such signals and EE.

In this paper, we introduce a generic method to personalize EE estimates,

by normalizing physiological signals from Activities of Daily Living (ADLs). Our

contribution is two-fold:

(i) We introduce a method able to normalize multiple physiological signals (HR,

GSR and respiration) by automatically estimating normalization parameters (i.e.

baseline and range). The proposed methodology uses low intensity ADLs, such as

lying down and walking and is independent of the underlying physiological process

driving inter-individual differences.

(ii) We evaluate the benefit of the proposed normalization methodology for activity-

specific EE estimation. We implemented activity-specific models combining

accelerometer and physiological data from two wearable sensors, located at the

chest and wrist. In a study group of 18 participants, we show error reductions

between 15% and 33% when normalized physiological signals are used, compared

to state of the art activity-specific EE models without normalized physiological

signals.

2. Related Work

2.1. EE estimation in epidemiological research

Typically, accelerometer based methods use activity counts, a unit-less measure

representative of whole body motion, as independent variable in the regression model

developed to predict EE (Crouter et al 2006). The main shortcoming is that a single

model does not fit all the activities, since the slope and intercept of the regression

model changes according to the activity performed. EE estimation based on HR suffers

from different problems. First, HR based estimations are inaccurate during sedentary

behavior, given that HR is also affected by non-activity related factors, such as stress and

emotions. Secondly, HR based models need individual calibration to perform accurately

(Brage et al 2007). The highly correlated relation between HR and EE within one

individual changes substantially between individuals (Altini et al 2013b).

2.2. Machine learning methods for EE estimation

The latest algorithms for EE estimation use machine learning techniques. Some

authors applied machine learning methods to directly estimate EE from accelerometer

features, using for example neural networks (Freedson et al 2011, Rothney et al 2007).

However these approaches suffer from the same limitations of the activity counts-

based approaches, being unable to capture the peculiarities of the relation between
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accelerometers features and EE during different activities (Bonomi et al 2012, Ruch et

al 2013). Others extended the single model approach, performing activity recognition

over a pre-defined set of activities, and then applying different methods to predict EE

(Altini et al 2012, Bonomi et al 2009, Tapia et al 2008, Rumo et al 2012). These models

are typically called activity-specific. Additionally, some hybrid approaches have been

developed. Unsupervised clustering was used to avoid time consuming activity labeling

during data collection, still dividing the EE estimation problem into sub-problems (Chen

et al 2013). However, this approach also showed sub-optimal performance compared to

activity-specific models.

Given the substantial amount of work using activity-specific models and the

consistent improvements obtained compared to other methods, as reported by Altini

et al 2012, Bonomi et al 2009 and Ruch et al 2013, we believe that activity-specific

models are presently the best methodology to follow when developing EE estimation

algorithms. However, inter-individual differences in physiology, as well as the resulting

need for individual calibration, limit the accuracy and practical applicability of EE

models using physiological signals (Altini et al 2013a, Brage et al 2007). Partitioning

the EE estimation into activity-specific sub-problems is not sufficient to address the

relation between physiological signals and EE in different individuals.

2.3. Normalization of physiological signals

During moderate to vigorous PA, differences in physiological signals between individuals

performing the same activities can be due to a variety of factors. While cardiorespiratory

fitness (CRF) is the main factor driving changes in HR during physical exercise

(Tulppo et al 2003), differences in respiration, skin temperature or GSR might be

caused by different underlying processes or characteristics of the person (Saltin and

Gagge 1971). We recently investigated the relation between multiple physiological

signals (HR, respiration rate, GSR and skin humidity) and EE for activity-specific

EE estimation models (Altini et al 2013a). Physiological signals showed higher

correlation with EE compared to accelerometer data. However, subject-independent

models including physiological signals performed sub-optimally, confirming the need

for individual calibration. Individual calibration limits practical applicability, since

the individual relation between a physiological signal and EE needs to be determined

for the algorithm to be accurate. To the best of our knowledge, the only attempt to

automatically normalize physiological signals without requiring individual calibration

was reported by our group. In Altini et al 2013b, we normalized HR from Activities of

Daily Living (ADLs) exploiting the known relation between HR, CRF and EE.

In this work, we propose a generic methodology to automatically normalize different

physiological signals at runtime, independently from the causes driving inter-individual

differences in such signals. The proposed normalization methodology uses low intensity

ADLs to avoid individual calibration in laboratory or supervised settings.
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3. Relation between EE, accelerometer and physiological data

In this section, we introduce the problem of inter-individual differences in physiological

signals when estimating EE. Figure 2.a shows the correlation between different signals

and EE. Even though physiological signals show higher correlation with EE compared to

accelerometer data, subject-independent models including physiological signals perform

sub-optimally, confirming the need for individual calibration (see figure 2.b). Figure 2.b

shows the larger individual errors obtained when using physiological signals in subject-

independent models, compared to accelerometer only models (A-C and A-W). HR-

based estimates still report the lowest error, but with the highest variability. When

comparing subject-independent and subject dependent models, little difference is found

for accelerometer-based models (3-4%), while physiological signals-based models showed

error increase up to 50% (see figure 2.c). Figure 1 highlights the inter-individual

differences peculiar of physiological signals, for the cases of HR and GSR. For two

subjects with similar body size, EE and accelerometer data is similar during different

activities, however large inter-individual differences in physiology (both GSR and HR)

can be seen. Clearly, if these signals are used to estimate EE, underestimations and

overestimations will occur.
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Figure 1. Reference EE, accelerometer and physiological data during a series of

physical activities for two subjects with similar body size. While EE and accelerometer

data show similar results and low inter-individual variability, big differences are found

in both GSR and HR, highlighting the need for normalization of these parameters

before their use for EE estimation.
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Figure 2. a) Correlation between accelerometer and physiological data with EE,

b) Root Mean Square Error of subject independent EE models developed using

accelerometer or physiological data, c) performance accuracy reduction when moving

from subject dependent to subject independent models. A-C is accelerometer data at

the chest, A-W is accelerometer data at the wrist, HR is heart rate, GSR is galvanic

skin response, Resp is respiration.

4. Methodology overview

Our approach is to estimate normalization parameters of physiological variables during

ADLs, and use normalized physiological variables for activity-specific EE estimation.

When determining the signal range, we are interested in estimating the physiological

signal value at rest (Xphybase), as well as the value that an individual would reach when

performing a high intensity activity (Xphyhigh).

We hypothesize that the physiological signal value during a high intensity activity

(Xphyhigh) can be estimated from ADLs, such as resting and walking, thus without

requiring any specific calibration test. Figure 3 shows a block diagram of the

normalization methodology and its three main logical blocks: a) the recognition of type

and intensity of ADLs, such as lying, walking and walking speed, b) the estimation of

normalization parameters using ADLs and c) the normalization of physiological signals.

As in standard activity-specific models, we divided the EE estimation process into

activity recognition and activity-specific regression models. Physiological signals are

normalized using the estimated normalization parameters (i.e. baseline and range),

before being used in the activity-specific models. Assuming n clusters of activities ci:

C = {c1, . . . , cn},∀ci ∈ C, ∃ yacti = Xactiβacti + ε (1)

yacti is the vector of actual EE values for a specific cluster of activities, βacti is the

vector of regression coefficients, and Xacti is the vector of m input features. Features can

be grouped into accelerometer features (Xacci), anthropometric characteristics (Xant)

and normalized physiological signals (Xphyn).

The normalized physiological signals (Xphyn , block c in figure 3) are derived using

the normalization parameters (i.e. the baseline - Xphybase - and range - Xphyrange - of a
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certain signal for a specific individual), according to the following equation:

Xphyn = (Xphy −Xphybase)/Xphyrange (2)

Where Xphy are the non-normalized physiological signals. Xphybase and Xphyrange are

determined automatically from ADLs. More specifically, Xphybase is the value of the

physiological signal Xphy when the user is lying down resting, while Xphyrange is:

Xphyrange = Xphyhigh −Xphybase (3)

Xphyhigh is the estimated physiological value for a particular user during a high intensity

activity (e.g. running at 8 km/h). Instead of using a high intensity activity or calibration

test, we estimate Xphyhigh using a multiple linear regression model. The regression maps

physiological signals during various ADLs (XADL) to the physiological signals value

during a high intensity activity (Xphyhigh , see figure 3, blocks a,b):

Xphyhigh = XADLβADL + ε (4)

where XADL is the vector of physiological signals values in pre-defined ADLs, such as

lying down resting and walking at certain speeds (e.g. 4 to 6 km/h), while β is the

vector of regression coefficients.
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Figure 3. Overview of our method to normalize physiological signals and estimate EE.

Normalized physiological signals are used for activity recognition and EE estimation

models. a) components required for the recognition of type and intensity of ADLs, b)

components for the estimation of normalization parameters and c) equation used to

normalize physiological signals.
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Figure 4. The two wearable sensors used in this experiment, ECG Necklace (left) and

Wristband (right).

5. Measurement setup and data collection

5.1. Participants

Eighteen (14 male, 4 female) healthy adults took part in the experiment. Mean age

was 32.1 ± 5.8 years, mean weight was 73.6 ± 9.4 kg, mean height was 176.3 ± 9.5 cm

and mean BMI was 23.62±1.66kg/m2. Imec’s internal Ethics Committee approved the

study. Each participant signed an informed consent form.

5.2. Instruments

Two wearable sensors were used for data collection, imec’s ECG Neckalce and Wristband

(see figure 4). The ECG Necklace was configured to acquire one lead ECG data at

256 Hz, and accelerometer data at 32 Hz. Two gel electrodes were placed on the

participant′s chest. Imec’s Wristband was configured to acquire phasic and tonic GSR

data at 128Hz and accelerometer data at 32Hz. Additionally, reference EE was collected

using the Cosmed K4b2 indirect calorimeter (McLaughlin et al 2001).

5.3. Experiment design

Participants were invited for recordings and reported to the lab after refraining from

drinking (except for water), eating and smoking in the two hours before the experiment.

The first part of the protocol consisted of activities selected as representative of common

daily leaving of many people in industrialized countries (Basset et al 2012). The

activities were: lying down, resting, desk work, writing, working on a PC, standing still,

washing dishes, stacking groceries, cleaning the table, vacuuming, walking self-paced,

climbing stairs up, climbing stairs down. Each sedentary and household activity was

carried out for a period ranging from 4 to 12 minutes. The second part of the protocol

was carried out at the gym, where participants performed a series of more vigorous

activities, including: walking at 3,4,5 and 6 km/h on a treadmill, walking at 3 km/h,

10% inclination, cycle ergometer at 60 and 80 rpm, low, medium and high resistance

levels, running at 7,8,9 and 10 km/h. Activities carried out at the gym were 4 minutes

duration, except for running, which lasted between 1 and 4 minutes.
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5.4. Statistics and performance measures

All analysis were performed independent of the participant (leave one subject out cross-

validation). Performance of the activity recognition was evaluated using the percentage

of correctly classified instances for each cluster. The performance measure used for

EE were the Root Mean Square Error (RMSE), as commonly used to report EE

estimation errors, and the Mean Absolute Percentage Error (MAPE), which provides

an indication of the error in relation to the EE required by the performed activity.

Performance of the normalization parameters estimation and walking speed estimation

models were evaluated using the RMSE and the percentage of the explained variance

of the multiple linear regression model (R2). As statistical analysis, paired t-tests

between non-normalized and normalized results were used. Significance level α was

set to 0.05. To allow for comparisons between methodologies and sensor locations, we

implemented six configurations (three for the Necklace and three for the Wristband): 1)

accelerometer data only, 2) combined accelerometer and non-normalized physiological

data, 3) combined accelerometer and normalized physiological data. To evaluate the

accuracy of the normalization parameters estimation against the ideal case of individual

calibration, single regression models were built using as predictors the physiological

signals only (HR, GSR level and respiration rate), and EE as dependent variable. Two

models were implemented for each signal. One model included physiological signals

normalized using the actual Xphyhigh , determined while subjects were running on a

treadmill (individual calibration). The second model included physiological signals

normalized using the estimated normalization parameters. These models were also

compared against single regression models using non-normalized physiological signals

as dependent variables, to evaluate the impact of the normalization procedure.

6. Methods implementation

6.1. Pre-processing

The dataset acquired in this work consists of reference V O2, V CO2, three axial

acceleration from chest (A-C) and wrist (A-W), ECG, respiration rate and GSR. EE

was calculated from O2 and CO2 (Weir 1949). Two subjects were unable to perform all

activities, while data from one subject had to be discarded due to sensor failure.

6.1.1. Activity type clusters. We manually grouped the activities into six clusters

related to the activity type and involved motion patterns (see table 1). We included

lying and sedentary as inactive clusters. Additionally, we included four active clusters,

one representative of household activities and dynamic transitions between activities,

namely the high whole body motion cluster (HWBM or Dynamic) and three related

to locomotion and active transportation, namely walking, biking and running. The

HWBM cluster is useful in distinguishing sedentary behavior and non-sedentary daily

life activities even when only one sensor is used (Altini et al 2012, Bonomi et al 2009).
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Table 1. Distribution of the activities into the six clusters used for activity recognition.

Cluster name Original activities

Lying Lying down resting

Sedentary Sitting resting, desk work, writing, working on a PC, standing still

HWBM/DynamicStacking groceries, washing dishes, cleaning and scrubbing, vacuuming

Walking Treadmill (flat: 3, 4, 5, 6 km/h, incline: 3km/h 10%, self-paced, stairs up and down)

Biking Cycle ergometer, low, medium and high resistance level at 80 rpm

Running 7, 8, 9, 10 km/h on a treadmill

6.1.2. Feature extraction and selection. Accelerometer data from both sensors were

segmented in 4 second windows, band-pass filtered between 0.1 and 10 Hz, to isolate

the dynamic component, and low-pass filtered at 1Hz, to isolate the static component.

The feature set includes; mean of the absolute band-passed signal, magnitude and inter-

quartile range, median, variance and standard deviation and main frequency peak and

amplitude of the main frequency peak. Feature selection for activity type recognition was

based on mutual information (Battiti et al 1994), while feature selection for activity-

specific EE models was automated using linear forward selection. Anthropometrics

features were added depending on the activity cluster, following the methodology of

Altini et al 2012. Features derived from physiological signals were used for both

activity recognition and EE models. The most discriminative features were selected

based on correlation. Selected features were; mean HR, mean skin conductance level

and respiration rate. Features were extracted over 15 seconds windows.

6.2. Activity recognition

Given the positive results in past research on activity recognition, we selected Support

Vector Machines (SVMs) as classifiers. For the SVMs, we used a polynomial kernel with

degree 5 (λ = 10, C = 1). Activity recognition was used for EE estimation, and as part

of the automatic physiological signals normalization system.

6.3. Automatic physiological signals normalization using ADLs

Two normalization parameters are required to perform the physiological signals

normalization, baseline and range. While the baseline is determined as the physiological

signals value while lying, a multiple linear regression model is built to predict the

physiological signals values while performing a high intensity activity (Xphyhigh i.e. an

individual’s physiological signal while running at 8 km/h) from physiological signals

values while walking. We selected lying and walking as the ADLs to use given the low

intensity and high accessibility of such activities. We chose the range between 4 and

6 km/h for walking speeds, since speeds close to this range were often reported as the

average walking speeds in healthy individuals (5.3 km/h in Browning and Kram 2005

and 5 ± 0.8 km/h in Minetti et al 2003). The walking speed estimator is a multiple
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linear regression model using as predictors the individual’s height and the following

accelerometer features: main frequency peak on the X axis, mean absolute value of the

band-passed signal, sum of the variance on the three axis, inter-quartile range on the X

and Y axis and high frequency band signal power on the X and Z axis.

The vector XADL in equation 4, was implemented as:

XADL = [XphyLying, XphyWalking4, XphyWalking5, XphyWalking6] (5)

Where XphyLying and XphyWalkingN are the means of the physiological signals values

while lying and walking at N km/h, for a certain user. N = 4, 5, 6. Actual physiological

signal values are finally normalized according to equation 2 in section 4, removing the

baseline and dividing by the estimated range.

6.4. Personalized activity-specific EE estimation

Following the methodology applied in current state of the art EE estimation algorithm,

EE is estimated by first classifying the activity performed and then applying an

activity-specific EE linear regression model. The activity-specific EE linear models

use anthropometric characteristics, accelerometer and physiological signals features.
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Figure 5. Scatterplot and residuals per study participant of measured (running on

a treadmill) vs. predicted (from physiological signals during ADLs) physiological

signals values during a high intensity activity (Xphyhigh
). Xphyhigh

is used together

with Xphybase
to determine the range and normalize the signals.
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7. Results

7.1. Automatic physiological signals normalization using ADLs

Activity recognition accuracy for the ADLs used by the normalization methodology

was 100% for lying and 98% for walking. The walking speed multiple linear regression

model could explain 94% of the variance in walking speed (R2 = 0.94). RMSE of

the model was 028 ± 0.09 km/h. Both models were previously reported in Altini

et al 2013b. The multiple linear regression models used to estimate Xphyhigh could

explain 90% of the variance for HR, 88% of the variance for GSR and 72% of the

variance for respiration rate (R2). RMSE was 9.3 beats per minute for HR, 2.4 µS

for GSR and 4.8 breaths per minute for respiration rate. Figure 5 shows the relation

between the measured and estimated Xphyhigh . RMSE for single EE estimation models

using physiological data only was 1.91 kcal/min for HR, 2.29 kcal/min for GSR and

2.49 kcal/min for respiration. RMSE for single EE estimation models using estimated

normalization parameters was 1.18 kcal/min for HR, 1.96 kcal/min for GSR and 2.14

kcal/min for respiration. No difference was found when comparing the models to

single EE estimation models using measured normalization parameters (i.e. performing

individual calibration) - p = 0.89 > α for HR, p = 0.08 > α for GSR and p = 0.68 > α

for respiration rate. EE estimation error was reduced by 60%, 25% and 18% for HR,

GSR and respiration rate respectively, when compared to non-normalized models.

7.2. Personalized activity-specific EE estimation

7.2.1. Activity cluster classification Subject independent classification accuracy of

activity type for the ECG Necklace using accelerometer features only was 93%.

Performance was improved by 1% when physiological signals were included in the

model, and by 3% when normalized physiological signals were included (p = 0.08 > α,

not significant). Accuracy for the Wristband was 76%. Accuracy increased by 4%

when physiological signals were included in the model, and by 6% when normalized

physiological signals were included (p = 0.04 < α).

7.2.2. Activity-specific EE estimation. RMSE for the ECG Necklace EE estimation

models - average of the six clusters - was 1.26 kcal/min when accelerometer-only

data was used, 1.11 kcal/min when combining accelerometer and physiological data,

and 0.83 kcal/min when combining accelerometer and normalized physiological data

(p = 0.02 < α). RMSE for the Wristband EE estimation models - average of

the six clusters - was 2.47 kcal/min when accelerometer-only data was used, 1.42

kcal/min when combining accelerometer and physiological data, and 1.23 kcal/min when

combining accelerometer and normalized physiological data (p = 0.01 < α). Normalized

physiological signals could reduced EE RMSE by 33% for the ECG Necklace and by 15%

for the Wristband. Misclassification effect (i.e. increased RMSE due to the application

of the wrong EE model) when no physiological signals were used was 20% for the ECG
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*indicate accelerometer-only models, Λ indicate models combining accelerometer

and physiological data, ’ indicate models combining accelerometer and normalized

physiological data.
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Table 2. RMSE and (MAPE) for all clusters of activities evaluated in this

work. Necklace refers to accelerometers only models, Necklace+Physio combines

accelerometer, HR and respiration rate data, while Necklace+Physio Norm combines

accelerometer, normalized HR and respiration rate data. Wristband refers to

accelerometers only models, Wristband+Physio combines accelerometer and GSR data,

while Wristband+Physio Norm combines accelerometer and normalized GSR data.

Lying Sedentary HWBM Walking Biking Running Avg

Necklace 0.38 (20) 0.80 (38) 1.35 (34) 1.56 (22) 1.90 (21) 1.59 (12) 1.26 (22)

Necklace+Physio 0.34 (18) 0.62 (32) 1.01 (29) 1.47 (21) 1.72 (20) 1.51 (12) 1.11 (20)

Necklace+Physio Norm 0.33 (18) 0.51 (28) 0.77 (22) 0.98 (14) 1.16 (14) 1.24 (9) 0.83 (15)

Wristband 1.01 (32) 4.38 (136) 3.16 (70) 1.74 (24) 2.30 (27) 2.21 (16) 2.47 (48)

Wristband+Physio 0.55 (26) 0.78 (43) 1.73 (48) 1.53 (22) 2.12 (26) 1.80 (13) 1.42 (28)

Wristband+Physio Norm 0.45 (22) 0.57 (29) 1.62 (45) 1.42 (21) 1.79 (20) 1.54 (11) 1.23 (22)

Necklace and 125% for the Wristband (due to the high confusion between active and

inactive clusters). Including physiological signals reduced the misclassification effect to

10% for the ECG Necklace and 29% for the Wristband. Normalized physiological signals

could further reduce the misclassification effect, which was 4% for the ECG Necklace

and 19% for the Wristband. Details for each model and activity are listed in table 2.

8. Discussion

In this paper we introduced a method to normalize multiple physiological signals (HR,

GSR and respiration) by automatically estimating normalization parameters. The

proposed method uses low intensity ADLs such as lying down resting and walking at

different speeds to estimate the normalization parameters, and it is independent of the

underlying physiological process driving inter-individual differences. To validate our

methodology, we implemented activity-specific models combining accelerometer and

physiological data from two wearable sensors, located at the chest and wrist. We

evaluated the impact of the proposed normalization methodology for activity-specific

EE estimation, analyzed on the same subjects and activities.

To the best of our knowledge, this is the first work which aims at defining a

generic method able to automatically normalize physiological signals. By applying

the proposed normalization method, we could significantly reduce estimation errors

for activity recognition and EE estimation. Other advantages that emerge from our

normalization method: by normalizing physiological signals from data acquired during

ADLs over a recent period of time (e.g. 2 weeks), the system could adapt to changes

in physiological or environmental factors. Changes in physiology (e.g. CRF) would

for example affect HR, while changes in environmental factor (e.g. temperature)

would affect GSR, requiring a new individual calibration. However by estimating the

normalization parameters from ADLs, the system could automatically adapt to such

changes, without requiring repeated individual calibrations.
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8.1. Automatic physiological signals normalization using ADLs

We estimated normalization parameters from ADLs, by modeling the relation between

the physiological signals values during lying down resting, walking at different speeds

and the physiological signals value during a high intensity activity (Xphyhigh). Xphyhigh

could be estimated with high accuracy for HR (R2 = 0.90), while the relation between

the measured and estimated Xphyhigh was weaker for GSR (R2 = 0.88) and respiration

(R2 = 0.72). We speculate that these differences are mainly due to two factors: a)

the tighter relation between HR and EE, due to the direct link between HR and oxygen

intake, which makes HR a better predictor of EE compared to GSR and respiration rate.

b) The higher responsiveness of HR, which is almost instantaneously affected by changes

in activity type and intensity, while GSR changes were slower. However, all models were

able to significantly improve EE estimation results compared to non-normalized signals.

RMSE for single EE estimation models using physiological data only was

reduced by 60%, 25% and 18% for HR, GSR and respiration rate respectively, when

compared to non-normalized models. Most importantly, all EE estimation models

using normalization showed no differences when compared to models developed using

individual calibration, confirming the feasibility of our normalization method. While

single models were useful to determine the effectiveness of the physiological signals

normalization, accelerometer data is required since the estimation of the normalization

parameters relies on the user context (activity and walking speed), which is derived

from accelerometer data.

8.2. Personalized activity-specific EE estimation

The proposed method reduced error in activity recognition, impact of misclassification

on EE estimation (by reducing misclassification between active and inactive clusters) and

EE estimation. While activity recognition is improved by only 2% when physiological

signals were normalized (compared to non-normalized physiological signals), the impact

of the error reduction on EE is larger. Activity misclassification of the Wristband is due

to the fact that not only movement at the wrist is weakly related to EE, but also to

activity type (high intensity of wrist movement can be detected even at rest, while e.g.

writing). By combining accelerometer and physiological signals, the misclassification

error between inactive and active clusters could be significantly reduced. Thus,

avoiding high EE estimation errors due to the application of the wrong activity-specific

model. For example figure 6, shows that sedentary activities misclassification as biking

was reduced from 11% to 5%, while biking misclassification rates as sedentary were

reduced from 14% to 4%. Misclassification rates are significantly further reduced when

normalized physiological data was employed. Misclassification of sedentary activities as

biking dropped to 0.4%, while misclassification of biking as sedentary dropped to 0%.

These improvements are due to the fact that normalized physiological signals are more

representative of the activity performed, while non-normalized physiological signals are

more representative of the underlying physiological differences in different persons (e.g.
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level of CRF). Previous research underestimated the importance of physiological signals

in activity type recognition, since multiple accelerometer were used (Tapia 2008). Single

sensor estimation approaches, as used in this work, could improve user comfort over

multi-devices solutions. When dealing with single sensor devices, physiological data

can provide significant improvements, especially when normalized. Finally, we showed

error reductions in EE estimation between 15 and 33%, compared to state of the art

activity-specific EE models combining accelerometer and non-normalized physiological

signals. Especially when the sensor is located where motion is weakly related to activity

type and EE, combining accelerometers and normalized physiological signals showed the

most substantial improvements.

We recognize limitations in our study. Even though we developed an algorithm to

derive the normalization parameters automatically, during ADLs, we evaluated it using

laboratory recordings only. We consider that the evaluation with lab data is a necessary

first step, as during lab recordings sufficient reference measurements of EE could be

acquired. In particular, out methodology allowed us to confirm performances of the

individual estimators (activity, walking speed, normalization parameters, EE) during

different PAs. Activities were chosen that are often occurring in free living situations

(e.g. lying and walking).

8.3. Conclusion and further work

In this work, we introduced a methodology to normalize physiological signals using

ADLs, in order to reduce inter-individual differences in physiological signals between

individuals and improve EE estimation accuracy. We believe that our method is a

significant step towards personalized physical activity monitoring, and to fully exploit

the tight individual relation between physiological signals and EE. In this work, we

confirmed that a relationship between physiological data during low intensity ADLs

and the normalization parameters exists. As future work, we are currently investigating

the practical applicability of the proposed methodology in free-living situations and on

a bigger sample size, as well as the possibility to combine multiple sensors to further

improve the estimate.
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