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Estimating Energy Expenditure Using Body-Worn
Accelerometers: a Comparison of Methods, Sensors

Number and Positioning
Marco Altini1, Julien Penders2, Ruud Vullers2 and Oliver Amft3

Abstract—Several methods to estimate Energy Expenditure
(EE) using body-worn sensors exist, however quantifications of
the differences in estimation error are missing. In this paper,
we compare three prevalent EE estimation methods and five
body locations to provide a basis for selecting among methods,
sensors number and positioning. We considered (a) counts-based
estimation methods, (b) activity-specific estimation methods us-
ing METs lookup, and (c) activity-specific estimation methods
using accelerometer features. The latter two estimation methods
utilize subsequent activity classification and EE estimation steps.
Furthermore, we analyzed accelerometer sensors number and
on-body positioning to derive optimal EE estimation results
during various daily activities. To evaluate our approach, we
implemented a study with 15 participants that wore five ac-
celerometer sensors while performing a wide range of sedentary,
household, lifestyle, and gym activities at different intensities.
Indirect calorimetry was used in parallel to obtain EE reference
data. Results show that activity-specific estimation methods using
accelerometer features can outperform counts-based methods by
88% and activity-specific methods using METs lookup for active
clusters by 23%. No differences were found between activity-
specific methods using METs lookup and using accelerometer
features for sedentary clusters. For activity-specific estimation
methods using accelerometer features, differences in EE esti-
mation error between the best combinations of each number
of sensors (1 to 5), analyzed with repeated measures ANOVA,
were not significant. Thus, we conclude that choosing the best
performing single sensor does not reduce EE estimation accuracy
compared to a five sensors system and can reliably be used.
However, EE estimation errors can increase up to 80% if a non-
optimal sensor location is chosen.

Index Terms—Accelerometers, Energy Expenditure

I. INTRODUCTION

Physical Activity (PA) and exercise capacity are among the
most important determinants of health and wellbeing. Ubiqui-
tous sensing technologies, able to monitor objectively and non-
invasively human behavior, started providing unprecedented
insights into the relation between PA and health [9].

Energy expenditure (EE) is the most commonly used single
metric to quantify PA. Different methods to estimate EE have
been developed in the past, from counts-based estimation
methods to activity-specific EE equations, developed using
one or more accelerometers. Counts-based estimation methods
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are developed by fitting a single regression line to all the
data, independently of the activity performed. On the other
hand, in activity-specific estimation methods, the estimation
process is split into two steps. First, activities are classified into
clusters that group them according to a certain criteria (e.g.
EE level [5], motion patterns [7], etc.). Secondly, an activity-
specific model is applied to estimate EE. Activity-specific EE
models [4], [7], [19] showed higher performance compared to
single models [12], [14]. However, little agreement is found
in literature regarding number of accelerometers, location on
the body, and the role of accelerometer features (e.g. used for
activity recognition only (activity-specific models using METs
lookup), or for both activity recognition and activity-specific
EE models (activity-specific using accelerometer features))
[2], [19]. Even though the use of a single sensor is more
practical, recent advances in sensor technology and the ease
of integrating small accelerometers into shoes [16], watches
or mobile phones, reduced obtrusiveness of wearable sensors,
allowing researchers to deploy multi-sensor systems.

Determining the optimal number and on-body positioning of
accelerometers to accurately estimate EE requires addressing
the following issues, that have not been studied: 1) On
activity recognition: what is the influence of activity type
misclassification on EE estimation error when using activity-
specific approaches?, 2) On differences in EE within an activity
cluster: which activity-specific approach performs best during
different activities? and 3) On EE estimation: how do activity
recognition accuracy and EE estimation error change based on
sensors number and positioning?

In this paper we analyze three prevalent EE estimation
methods as well as on-body sensors number and positioning
to estimate EE. In particular, this paper provides the following
contributions:

1) We analyze EE estimation error for three common EE
estimation approaches (counts-based, activity-specific
using METs lookup and activity-specific using ac-
celerometer features). We show that activity-specific
using accelerometer features approaches outperform
counts-based approaches and activity-specific using
METs lookup approaches for active clusters.

2) We analyze all combinations of five accelerometers on-
body positions and evaluate their impact on activity
recognition and EE estimation error. We show that a
single accelerometer is sufficient to maintain the lowest
EE estimation error when suitably placed.
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II. RELATED WORK

A. Counts-Based Estimation Methods

Counts-based methods were the first EE estimation algo-
rithms developed, given the relation between motion intensity
close to the body’s center of mass and EE [12]. However,
single regression models are unable to fit all the activities,
since the slope and intercept of the regression model change
based on the activity performed while data is collected [21].
As a result, even when motion intensity (activity counts) is
representative of EE, the output can be inaccurate. Addi-
tionally, the inability of these systems to recognize high or
low body movement (e.g. biking or arm exercises) caused
high estimation error for activities not involving whole body
motion. In [11] the authors had to remove biking activities
from their evaluation, due to the inability of their system to
capture EE changes when there is limited motion close to the
body’s center of mass.

B. Activity-Specific Estimation Methods

The latest algorithms extended estimation methods based
on single models by performing activity recognition over a
predefined set of activities - or clusters of activities -, and
then applying different methods to predict EE [4], [2], [19],
[7], [21], based on the activity detected (activity-specific EE
approaches). Other machine learning based methods were
developed [14], trying to directly estimate EE from accelerom-
eter features, using for example neural networks [18], [14].
However these approaches suffer from the same limitations of
the counts-based estimation methods, being unable to capture
the peculiarities of the relation between accelerometer features
and EE during different activities [8]. The most common
activity-specific approaches are the following:

1) Activity-Specific Using METs Lookup: One approach is
to assign static MET values from the compendium on physical
activities [1] to each one of the clusters of activities [7], [2],
and use anthropometric features or other static features (e.g.
heart rate at rest) to personalize the activity-specific models
for different individuals.

2) Activity-Specific Using Accelerometer Features: Another
approach is to apply a regression equation for each activity
classified [19], [21], extending counts-based approaches to
multiple clusters of activities. The regression models typically
use accelerometer features and anthropometric characteristics
as independent variables.

C. Comparisons

1) Comparisons of Estimation Methods: [7] showed that
activity-specific estimation methods using METs lookup out-
perform counts-based approaches when a single sensor is
used. In [2], the authors extended the static approach of
[7], developing a custom MET table, which takes into ac-
count the heart rate at rest, to predict EE, showing 15%
improvement in performance compared to the best counts-
based estimation methods. In both our previous work [4] and
in [2], activity-specific estimation methods using METs lookup
and accelerometer features were implemented and compared.

However, while we proposed a combined approach using
METs lookup for sedentary clusters of activities and using
accelerometer features for active clusters, the authors of [2]
opted for using METs lookup only. The two systems used a
different sensor setup. One single sensor on the chest was
used in [4], while three sensors placed on the upper arm,
thigh and waist were used in [2]. The different activity types,
sensors number and positioning might have motivated the
different choices made by the authors. Thus, it is unclear what
estimation method works best as well as if different estimation
methods require different sensors number.

2) Comparisons of Sensors Number and Positioning: When
it comes to sensors number and positioning, comparisons are
lacking. Some works investigated the accuracy of sensors
placed on different parts of the body to detect a specific
set of activities [5], [17], [19], [6], [10]. However, none of
these works considered how sensors number and positioning
affects EE. Some researchers showed high accuracy in EE
estimates adopting one sensor placed on the lower back [7]
or chest [4]. Others used two or three accelerometers [19],
[2]. Small differences between protocols used to collect data,
algorithms evaluation metrics, as well as the inclusion of extra
sensors in only some of the systems (e.g. heart rate), limit our
understanding of what is the best solution in terms of sensors
number and positioning.

III. ANALYSIS APPROACH

This section covers the approach we used to analyze the
role of different estimation methods, sensors number and
positioning for EE estimation.

1) Estimation Methods: we compared three common meth-
ods to estimate EE: (a) counts-based, activity-specific
using (b) METs lookup and using (c) accelerometer
features (see Fig. 1 and Fig. 2).
a) Counts-Based Estimation Methods: These methods
consist in a linear regression model. The model can be
formalized in vector form as follows: y = Xβ + ε. In
the context of EE estimation, y is the vector of target
EE values, β is the vector of regression coefficients,
and X is the vector of input features. The vector
X contains p features, features that can be grouped
into two categories: accelerometer features (Xacc) and
anthropometric characteristics (Xant).
b) Activity-Specific Estimation Methods Using METs
Lookup: They are composed of two parts: activity recog-
nition and activity-specific models. Assuming n clusters
of activities C = {c1, . . . , cn},∀ci ∈ C, ∃ yacti =
Xactiβacti+ε. Each yacti maps an activity cluster to EE.
yacti is the vector of target EE values for a specific clus-
ter of activities, β is the vector of regression coefficients,
and Xacti is the vector of input features. The vector
Xacti contains r features, a MET value depending on
the activity type, taken from the compendium of physical
activities (Xmeti ), and anthropometric characteristics
(Xant), used to personalize models between individuals.
c) Activity-Specific Estimation Methods Using Ac-
celerometer Features: Similarly to b), we assume
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Fig. 1. Block diagram of counts-based estimation methods. Accelerometer
and anthropometric features are used independently of the activity type.

n clusters of activities C = {c1, . . . , cn},∀ci ∈
C, ∃ yacti = Xactiβacti +ε. Where each yacti maps
an activity cluster to EE. As in b), yacti is the vector
of target EE values for a specific cluster of activities, β
is the vector of regression coefficients, and Xacti is the
vector of m input features. Features can be grouped into
accelerometer features (Xacci ) and anthropometric char-
acteristics (Xant). Xacci differ from Xmeti introduced
in b), since they are not constant and change within a
cluster.

2) Sensors Number and Positioning: we evaluated all pos-
sible combinations of 5 sensors (see Fig. 3 and Sec. V-B
for details). Our analysis is structured as follows:
a) Activity Recognition: ∀ sensors number j ∈
{1, . . . , 5}, and ∀ combinations k of j sensors, k =

(
5
j

)
,

we implemented an activity recognition model to clas-
sify clusters of activities ci ∈ C = {c1, . . . , cn}. Ad-
ditionally, activity recognition accuracy was evaluated
in the ability to discriminate between sedentary and
active clusters of activities. This analysis was performed
to understand to which extent misclassification of the
activity class can affect EE estimation accuracy for
activity-specific EE models.
b) Differences in EE within an Activity Cluster: We
assumed perfect activity recognition (i.e. ∀ instance d,
we assume cdp

= cda
where cdp

is the predicted cluster,
while cda is the actual cluster). Assuming n clusters of
activities C = {c1, . . . , cn},∀ci ∈ C, ∀ sensors number
j ∈ {1, . . . , 5}, and ∀ combination k of j sensors, k =(
5
j

)
, we implemented an activity-specific model using

accelerometer features; yi,j,k = Xi,j,kβi,j,k + ε. Where
Xi,j,k is the vector of the input features (as in III.1.c,
features include Xacci,j,k and Xant). Xacci,j,k includes
features from one of the k combinations of j sensors
for the activity i. On the other hand, as shown in sec-
tion III.1.b, activity-specific estimation methods using
METs lookup do not include accelerometer features in
the activity-specific models. Thus, once perfect activity
recognition is assumed there is no difference in EE esti-
mation due to sensor number and positioning. Assuming
n clusters of activities C = {c1, . . . , cn},∀ci ∈ C,
we implemented one activity-specific regression model
using METs lookup per activity, as in Sec. III.1.b;
yacti = Xactiβacti + ε. This analysis was performed to
understand in which activities accelerometer features can
improve EE estimation accuracy, compared to activity-
specific estimation methods using METs lookup, and if
higher sensors number can reduce EE estimation error.
c) EE Estimation: Combining activity-recognition and
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Fig. 2. Block diagram of the activity-specific estimation methods considered
for comparison in this work. a) shows approaches using METs lookup while
b) shows approaches using accelerometer features as predictors.

activity-specific EE models, we analyzed the impact
of multiple accelerometers in EE estimation. Misclas-
sification rates were taken into account by applying
the wrong activity-specific EE model in the estimation
process. As in all activity-specific models, ∀ci ∈ C =
{c1, . . . , cn}, ∃ yacti = Xactiβacti + ε. Given an
instance d, we can apply n EE models, one ∀ci. if
cdp 6= cda , the wrong activity-specific EE model will
be applied (e.g. yactp = Xactpβactp + ε instead of
yacta = Xactaβacta + ε). This analysis was performed
to understand if more sensors improve not only activity-
recognition, as known from literature, but also EE esti-
mation accuracy, due to reduced misclassification rates.

A. Statistics and Performance Measure

Models were derived using data from all but one par-
ticipants, and validated on the remaining one (leave-one-
participant-out cross validation). Performance of the activity
recognition models was evaluated using the average of the per-
centage of correctly classified instances (i.e. accuracy). Results
for EE estimates were reported using Root mean square error
(RMSE), where the outcome variable was gross EE expressed
in kcal/min. A one-way repeated-measures within-subjects
ANOVA with six levels was used to compare EE models. The
Tukey test was used to perform pairwise comparisons. Paired
t-tests were used to compare RMSE between the best and
worst sensor for each number of sensors (1 to 5). Significance
was assessed at α < 0.05.

Fig. 3. ECG Necklace and on-body accelerometer positioning.
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IV. IMPLEMENTATION

A. Activity Type Clusters

We grouped all recorded activities into two categories to
separate sedentary and active behavior. We included lying (ly-
ing down resting), sitting (sitting resting, desk work, reading,
writing, working on a PC, watching TV) and standing (stand-
ing resting, standing cooking) postures in our sedentary clus-
ters. Active clusters were four, one representative of household
activities, namely the high whole body motion (HWBM) clus-
ter (stacking groceries, washing dishes, folding clothes, clean-
ing and scrubbing, washing windows, sweeping, vacuuming)
and three representative of locomotion and active transporta-
tion, such as walking (self-paced, self-paced carrying books,
treadmill flat: 3, 4, 5, 6km/h, incline: 3, 5km/h, 5, 10%), bik-
ing (cycle ergometer, low, medium and high resistance level at
60 and 80rpm) and running (7, 8, 9, 10km/h on a treadmill).

B. Features Extraction and Selection

Features extracted from the sensors’ raw data were used
to derive activity recognition and EE models. Accelerometer
data from the three axes of all five sensors were segmented
in 4 seconds windows, band-pass (BP) filtered between 0.1
and 10 Hz, to isolate the dynamic component caused by body
motion, and low-pass (LP) filtered at 1 Hz, to isolate the
static component, due to gravity. Feature selection for activity
recognition was based on correlation, due to the hypothesis
that a good feature set includes features correlated with the
class, but uncorrelated to each other. The final feature set
included: mean of the absolute BP signal, inter-quartile range,
mean distance between axes, median, variance, standard devi-
ation, zero crossing rate, main frequency peak, low and high
frequency band signal power. Feature selection for EE was
based on how much variation in EE each feature could explain
within one cluster. The process was automated using linear
forward selection. Features to be selected depended on the
combination of sensors considered for a model. Additionally,
anthropometrics features (body weight and resting metabolic
rate (RMR), estimated with the Harris-Benedict formula [13])
were added depending on the cluster, following the method-
ology for activity-specific EE models presented in [4].

C. Activity recognition

We adopted a constant set of parameters for sliding window
and classifier type of the activity recognition. We selected a
time window of 4 seconds, which is short enough to detect
short breaks in sedentary time, and long enough to capture
the repetitive patterns of some activities (e.g. walking). Given
the positive results in past research on activity recognition, we
selected Support Vector Machines (SVMs) as classifiers. For
the SVMs, we used a polynomial kernel with degree 5 (λ =
10, C = 1), fixing these parameters for all models.

D. Energy Expenditure

1) Counts-based Methods: We implemented single regres-
sion models using data from all activities and motion intensity
(i.e. mean of the absolute BP signal summed over the three

axis) as the only accelerometer feature, together with anthro-
pometric characteristics (body weight and RMR), as typically
done in epidemiological studies (see Fig. 1).

2) Activity-Specific Estimation Methods Using METs
Lookup: Activity-specific estimation methods using METs
lookup relied on the activity recognition system of Sec.
IV-C. METs values were used together with anthropometric
features (body weight and RMR), for the activity-specific linear
regression models (see Fig. 2.a). METs values were chosen
based on compendium values for the activities included in each
cluster, resulting in 1 for lying, 1.3 for sitting and standing, 3.5
for HWBM, 3 for walking, 6.7 for biking and 11 for running.

3) Activity-Specific Estimation Methods Using Accelerome-
ter Features: Within one activity cluster, EE can be estimated
using other features, representative of EE changes within the
activity cluster [19], [21], [4]. Depending on sensors selected,
we created different EE activity-specific linear models, using
the selected set of features for those sensors (see Fig. 2.b).

V. EVALUATION STUDY

A. Participants

Participants were 15 (11 male, 4 female), mean age 29.8±
5.2 years, mean weight 71.8 ± 15.9 kg, mean height 1.75 ±
0.10 cm, mean BMI 23.2± 3.0 kg/m2. Imecs IRB approved
the study. Each participant signed an informed consent form.

B. Instruments

1) Body Area Network: The sensor platform used was
the ECG Necklace. Five ECG Necklaces were synchronized
in a wireless network [3] (see Fig. 3). One ECG necklace
was placed on the chest (C) and configured to acquire one
lead ECG data at 256 Hz, and accelerometer data at 64 Hz
(ADXL330). Sampling frequency was chosen as 64Hz since
it is considered to be much higher than typical human motion.
The other four ECG Necklaces were configured to acquire only
accelerometer data at 64Hz and placed on the dominant ankle
(An), dominant thigh (T), dominant wrist (W) and waist (Wa)
- at the right hip. All sensors were attached to the body using
elastic bands. ECG data was not used for this study. Activity
type was annotated manually by experimenter.

2) Indirect Calorimeter: Breath-by-breath data were col-
lected using the Cosmed K4b2 indirect calorimeter. The
Cosmed K4b2 weights 1.5kg and showed to be a reliable mea-
sure of EE [15]. The system was manually calibrated before
each experiment according to the manufacturer instructions.

C. Experiment Design

Participants were invited for recordings on two separate
days. They reported to the lab at 8:00 am, after refraining
from drinking (except for water), eating and smoking in the
two hours before the experiment. The protocol included a wide
range of sedentary, lifestyle and sport activities. Each activity
was carried out for a period from 4 to 12 minutes, except for
running (1 to 4 minutes). The first minute of each recording
was removed to discard non-steady-state data.
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VI. RESULTS

Given the high number of models implemented, we report
only results for the best combinations of 1 to 5 sensors
(Fig. 4.a-b, Fig. 5.a-b and Fig. 6.a), as well as information
on exactly which sensors provide these optimal performance,
together with the worst performance obtained with the same
number of sensors, for comparison.

A. Estimation Methods

Fig. 4 shows the effect of different feature sets on EE
estimation performance for activity-specific EE models, as-
suming perfect activity recognition.Only one activity-specific
model using METs lookup is needed for comparison, since
these approaches don’t use accelerometer features. The RMSE
obtained for activity-specific estimation methods using METs
lookup was 1 kcal/min, while for activity-specific estimation
methods using accelerometer features it ranged between 0.84
and 0.86 kcal/min (18% error reduction, p < 0.05, Fig.
4.a). 23% error reduction was shown for active clusters using
accelerometer features (Fig. 3.b). Fig. 5 shows performance
of the EE estimation models in combination with activity
recognition, as well as counts-based estimation methods. For
clarity, results for the activity-specific estimation methods
using METs lookup were omitted in Fig. 5. Activity-specific
estimation methods using METs lookup rely on the same
activity recognition algorithms used by the activity-specific
method using accelerometer features, thus the METs-based
method would still perform sub-optimally. The RMSE for
activity-specific estimation methods using accelerometer fea-
tures ranged from 0.85 to 0.89 kcal/min. RMSE for counts-
based estimation methods was between 1.6 and 2.6 kcal/min
depending on sensor position (88% error increase for the best-
performing sensor, C, p < 0.05). The error obtained using
the counts-based estimation was significantly higher compared
to activity-specific models even when counts were considered
separately for sedentary and active clusters (Fig. 6.b).

B. Sensors Number and Positioning

Sensors number and positioning is evaluated according to
the three criteria of Sec. III: (1) activity recognition, 2) differ-
ences in EE within an activity cluster and 3) EE estimation).

1) Activity Recognition: Fig. 6.a shows the performance of
the activity recognition models. Additionally, the impact of
sensor location (best VS worst for each number of sensors) is
shown (Fig. 6.b-e). Accuracy varied between 85 for 1 sensor -
and 98% for 3 or more sensors (Fig. 6.a). Accuracy for active
clusters was always above 98%, with differences of only 1%
between the best single sensor system and a 5 sensors body
area network (Fig. 6.a). Sedentary clusters accuracy ranged
between 69.9 and 97%. Sensor location affected the accuracy
by 12% for a single sensor, while the decrease in performance
was reduced to 7%, 5% and 4% for two, three and four sensors
respectively (see Fig 6.b-e).

2) Differences in EE within an Activity Cluster: Fig. 4
shows the effect of different feature sets on EE estimation
performance for activity-specific estimation methods using ac-
celerometer features, assuming perfect activity recognition. No

significant differences were found when different locations on
the body were considered to extract activity-specific features.
However, differences are found when analyzing separately
sedentary and active clusters, showing higher errors in seden-
tary clusters using accelerometer features from four or five
sensors (see Fig. 4.b).

3) EE Estimation: Fig. 5 shows performance of the EE esti-
mation models in combination with the activity recognition. In
this analysis, differences in performance are due to a) higher
misclassification rates of models based on a smaller number of
sensors and b) different feature sets used for activity-specific
estimation methods using accelerometer features, depending
on the sensors that are part of the system. Sensor location
analysis shows the Chest sensor as the best single sensor for
EE estimation, while the Wrist sensor seems to perform worse
than any other combination (Fig. 6.c-f).

VII. DISCUSSION

To the best of our knowledge, this is the first time that state
of the art activity-specific EE estimation methods are eval-
uated to determine benefits of using multiple accelerometers
for EE estimation. For activity-specific estimation methods,
evaluating the benefit of multiple sensors is important, since
additional accelerometers can contribute differently. Firstly,
additional sensors can improve the accuracy of the activity
recognition model. Thus, reducing EE estimation error due
to the selection of the wrong activity-specific EE model.
Secondly, features from more than one sensor could better
explain the EE variance within one cluster of activities.

A. Estimation Methods

Our estimation results show that activity-specific estimation
methods using accelerometer features outperform counts-based
estimation methods by 88% and activity-specific estimation
methods using METs lookup by 18%. Counts-based estimation
methods were outperformed by the activity-specific estima-
tion, regardless of sensor location, with RMSE between 1.6
kcal/min at the chest to 2.6 kcal/min at the wrist. The results
reflect a similar behavior to what was observed for activity-
specific models, where wrist-based models were poorly per-
forming due to weak relation between movement and EE.
The inability of counts-based estimation methods to fit all
activities is further reflected by the estimation error when
considering sedentary and active clusters separately. Activity-
specific estimation methods using accelerometer features pro-
vide no advantage compared to activity-specific estimation
methods using METs lookup for sedentary clusters, but only
for active clusters (23% error reduction). This is due to the
fact that active clusters can be performed at varying intensities
(e.g. walking at different speeds), and assigning static METs
values prevents the model from capturing these differences in
intensity within one cluster of activities. However, sedentary
clusters of activities cannot be performed at varying intensities
(e.g. sitting or lying down), making it possible to estimate
EE accurately using METs lookup approaches. We assume
model development did not lead to overfitting given the similar
level of error variability between simple and complex methods.
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Fig. 4. EE estimation RMSE for sedentary and active clusters when perfect activity recognition is assumed in activity-specific estimation methods. Boxplots 1
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between models the annotated models, i.e. 4S (4 sensors, sedentary clusters) and 5S (5 sensors, sedentary clusters) and model sedentary model when only
one sensor is used, i.e. 1S (p < 0.05). RMSE for the best and worst activity-specific model using accelerometer features for each number of sensors is shown
on the bottom row. C is Chest, T is Thigh, An is Ankle, W is Wrist and Wa is Waist.
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Fig. 5. EE estimation RMSE for sedentary and active clusters in activity-specific estimation methods using accelerometer features, after activity classification.
Activity-specific estimation methods using METs lookup are not shown due to sub-performing results. Comparison with a counts-based model is shown in a)
as counts-based and b) as CS and CA. ∗ indicates significant differences between the annotated counts-based model and all of the other models, i.e. activity
specific models using accelerometer features (p < 0.05). RMSE for the best and worst activity-specific models using accelerometer features for each number
of sensors is shown on the bottom row. C is Chest, T is Thigh, An is Ankle, W is Wrist and Wa is Waist.



7

Fig. 6. Activity recognition accuracy for sedentary (average accuracy of lying, sitting and standing) and active (average accuracy of HWBM, walking, biking
and running) clusters, and their average. Classification accuracy for different sensors number and positioning are shown on the right. C is Chest, T is Thigh,
An is Ankle, W is Wrist and Wa is Waist.

We expect that overfitting was avoided as the data from one
participant was eight used for training or evaluation.

B. Sensors Number and Positioning

Our results on the sensors number and positioning point
out three main findings: 1) On activity recognition: if properly
chosen, two sensors are sufficient to provide accurate physical
activity type assessment (see Fig. 6). 2) On differences in EE
within an activity cluster: Adding features from more than
one sensor in the activity-specific models using accelerometer
features does not improve the accuracy of the EE estimate (see
Fig. 4). 3) On EE estimation: Applying a wrong EE model
due to misclassification of the activity type has a small (non-
statistically significant) impact on the EE estimate accuracy
provided that an optimal sensor positioning is chosen (e.g. the
Chest sensor, see Fig. 5). Thus, choosing the best performing
single sensor does not reduce performance for EE estimation
compared to a five sensors system.

1) Activity Recognition: Our results on the sensor number
for activity recognition confirm previous works that considered
multiple accelerometers [6], [17], [19], [10]. Adding more
sensors improves accuracy, until a plateau is reached, when
two or more sensors are used. In our case 97/98% accuracy
using Chest and Wrist or Chest and Thigh sensors. It is of
interest for our analysis, how activity recognition influences
EE estimates as discussed below.

2) Differences in EE within an Activity Cluster: Our sec-
ond finding concerns the accelerometer features needed to
explain differences in EE within one cluster. To determine
such features, we developed EE models assuming perfect
activity recognition (see Fig. 4). We showed that accelerometer
features from one sensor are sufficient to explain differences
in EE within one cluster of activities. This finding can be
explained by the fact that within one cluster of activities (for
example walking) the variation in EE is explained mainly
by the level of motion intensity of the whole body. Other
features, such as motion intensity of the wrist sensor, can lead
to errors, since high level of motion (e.g. while writing), do
not correspond to high EE. This reasoning might explain why
in Fig. 4 the error is shown to increase when features from 4
or 5 sensors are used for sedentary clusters (Fig. 4.b).

Even though adding features from more sensors does not
reduce EE estimate error, accelerometer features from at least

one sensor should be used for active clusters (23% error re-
duction compared approaches using METs lookup). In a recent
review on activity-specific EE estimation [20], the controversy
between applying static values (i.e. MET values) and the need
of including accelerometer features in linear models had been
raised. Past research showed inconsistency in the approach
used for activity-specific models even after implementing
and comparing estimation methods using METs lookup or
accelerometer features [2], [4]. With this analysis we show
that accelerometer features are relevant only for active clusters,
and most importantly this is true regardless of the number of
sensors used (see Fig. 4.b). Our findings are consistent with
our previous work using one sensor [4], indicating that the best
approach to obtain high accuracy and limit model complexity,
is to use a combined approach. Activity-specific models using
METs lookup can be used for sedentary activities, where static
METs values and anthropometric features are sufficient to
accurately estimate EE.

3) EE Estimation: Provided that the best performing sensor
is chosen, no significant error reduction was found when more
than one sensor was used for EE estimation. This is due to the
fact that errors are mainly due to misclassification of posture
(one single sensor is unable to recognize all of the three
postures in the sedentary cluster), resulting in applying a very
similar activity-specific EE model. Thus, the EE estimation
RMSE for a single sensor placed on the Chest is similar when
compared to a 5 sensors system (no statistically significant
difference), even if activity classification accuracy is decreased
by up to 13% on average, and 28% for sedentary clusters.
This is an important finding since past work showed good
accuracy using one single accelerometer and activity-specific
approaches [7], [4], but no previous work could compare
performance of EE estimation methods when different sensors
number and positioning were used, preventing us from under-
standing if systems relying on multiple sensors for activity
recognition [2], [19] could still provide better results.

C. Limitations

Performance for activities that were not part of the dataset
should be assessed outside of the lab. However, there is
currently no reference system able to measure breath-by-breath
EE in unconstrained settings. Only by using indirect calorime-
try and supervised settings we can record data which allows us
to analyze how multiple sensors affect the EE estimate process
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in both activity recognition and intra-individual differences
within one activity. Another limitation was to limit the number
of MET values used for our analysis to the ones associated to
the activity clusters, while more fine grained values could be
used for certain activities (e.g. walking at different speeds).
However we believe that using individual MET values for
activities may not generalize, since some activities (e.g. related
to household) show different EE but cannot be accurately sub-
divided when using a limited number of sensors. Hence some
activity clusters would still require a single MET value to be
used, while actual EE varies widely.

VIII. CONCLUSIONS

We suggest using one single sensor close to the body’s
center of mass (chest or waist), together with a combined
activity-specific estimation method, for accurate and unobtru-
sive EE estimation. The combined estimation method should
be composed of activity-specific models using METs lookup
for the sedentary activity clusters, and activity-specific models
using accelerometer features for the physically active clusters.
This approach showed to be both practically feasible, since it
limits the number of sensors to one, and accurate in terms of
EE estimation accuracy.
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