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Abstract—Activity recognition for human behavior monitoring
is an important research topic in the field of mHealth, especially
for aspects of physical activity linked to fitness and disease
progress, such as walking and walking speed. Sensors embedded
into smartphones recently enabled new opportunities for non
invasive activity and walking speed inference. In this paper, we
propose a data fusion approach to the problem of physical activity
recognition and walking speed estimation using smartphones.
Our architecture combines different sensors to take into account
practical issues arising in realistic settings, such as variability in
phone location and orientation. Additionally, we introduce a novel
automatic calibration methodology combining accelerometer and
GPS data while walking in unconstrained settings, in order to
reduce walking speed estimation error at the individual level.
The proposed system was validated in 20 participants while
performing sedentary, household, ambulatory and sport activities,
in both indoor laboratory and outdoor self-paced settings. We
show that by combining accelerometer and gyroscope data,
smartphone location can be distinguished between the two most
commonly used positions (bag and pocket), regardless of phone
orientation (97% f-score). Location-specific activity recognition
models can significantly improve activity recognition performance
(p = 0.0010 < α), especially helping in distinguishing activities
involving similar motion patterns (91% f-score overall, improve-
ments between 4% and 11% for walking and biking activities).
Our proposed method to personalize walking speed estimates, by
automatically calibrating walking speed estimation models during
a short self-paced walk, reduced walking speed estimation error
by 8.8% on average (p = 0.0012 < α).

I. INTRODUCTION

Activity recognition is an important research topic in the
field of mHealth [1]. Mobile activity recognition can enable
a series of applications for end users, from fitness tracking,
health monitoring and context-aware services to home and
work automation [2]. Because of the smartphone’s small size,
computational power, communication capabilities and their
ubiquitous use in our society, they are an ideal platform for
data mining applications, often replacing previous approaches
based on body-worn wearable accelerometers [3]. To this aim,
It has been shown in many studies that accelerometer and
gyroscope data is capable of capturing basic activities [4], [5],
making smartphones a suitable tool for continuous monitoring
of user activities and behavior in terms of physical activity.
Among the wide spectrum of physical activities, special atten-
tion is often put on walking and walking speed [6], [7], [8]. The
ability to locate periods of walking, as well as walking speed,
can be used for several applications. Walking speed is key

in providing additional context when for example monitoring
disease progress in different patient populations [9], as well
as to measure physical performance in older populations [10].
Additionally, accurate walking speed estimation can be used to
model physiological changes in different contexts and therefore
provide accurate personalized energy expenditure estimations
[11], cardiorespiratory fitness estimations [12] or automate
gait based barometric authentications [13]. Walking speed
estimation was often investigated considering walking periods
only, recorded on a treadmill with the sensor or phone in
a fixed position [6]. However, accurate detection of walking
speed requires first to be able to detect walking periods at
different phone carrying positions. Thus, providing reliable
activity recognition is a necessary first step.

One of the main challenges when developing activity
recognition and walking speed estimation systems is dealing
with differences in persons’ anthropometric characteristics,
walking patterns, and possibly disease status, which cause
difficulties in achieving high accuracy at the individual level.
While anthropometric characteristics (e.g. height) have been
used to extract subject-specific information about walking (e.g.
stride length), or as input for machine learning-based models
[6], no work so far investigated the possibility to use the
rich multi sensorial information provided by smartphones, to
personalize and dynamically recalibrate the walking speed
models - without requiring user intervention. In this work, we
propose a data fusion approach able to deal with both different
phone locations and orientations to distinguish activities of
daily living, as well as a personalization approach to walking
speed estimation. In particular, our contribution is twofold:

1) We introduce a novel automatic calibration methodol-
ogy in order to personalize walking speed estimates,
reducing walking speed estimation error at the indi-
vidual level. Our methodology combines accelerome-
ter and GPS data while walking in unconstrained set-
tings, to adapt subject independent estimates. Results
show an improvement in walking speed estimation
accuracy of 8.8% on average.

2) We tackle the problem of walking speed estimation
in realistic settings by implementing phone location
recognition and location-specific activity recognition
models using orientation-independent features. We
validated our algorithms on a datasets of 20 partici-
pants performing activities of daily living in the lab
as well as in self-paced outdoor settings.



II. RELATED WORK

A realistic approach to walking speed estimation using
smartphones requires accurate activity recognition as a first
step. For this reason we cover here related work on smartphone
based activity recognition, before moving into walking speed
estimation research and personalization approaches.

A. Phone Orientation and Location

Phone orientation was the first issue investigated by multi-
ple authors [14], [15], [16], [17], [20], [21], [22]. As a matter
of fact, even when the phone is carried always in the same
location (e.g. bag or pocket), the orientation can change - since
the smartphone is not fixed on the body - resulting in reduced
activity recognition accuracy. The two main approaches re-
ported in literature are: transforming the coordinates system
before applying the classification algorithm [16], [19], or using
orientation-independent features [17], [20], [22]. Orientation-
independent features are calculated summing or squaring the
accelerometer signal over the three axis, after removing the
static component due to gravity [20]. On the other hand,
transforming the coordinate system relies on the hypothesis
that all input accelerometer signals can be transformed into
the same global reference system, on which a classifier was
trained. This approach showed improvement in performance
up to 20% compared to when no orientation adjustment was
performed. However, typically the transformation is performed
on data retrieved using the phone in a fixed different orientation
[16], while the phone can change orientation continuously
when carried - for example - in a bag. Thus, the orientation-
independent features seem to be a more robust approach to
practical activity recognition in real life.

A second major issue is phone location, which is not
fixed on the body. Pioneering work on this matter was done
by Kunze et al. [23], who investigated the possibility to
determine on-body sensor position based on accelerometer data
while walking. Different approaches were investigated using
mobile phones, from location-independent models robust to
changes in location, to location-specific models trained on
the most commonly used locations [24]. Solving the location
issue typically requires a different approach compared to the
ones used to tackle variability in orientation. In [16], the
authors showed that even when applying a transformation to
the coordinates system, different on-body locations require
different classifiers to perform optimally. Early work focused
on locating the phone without investigating the impact on
activity recognition accuracy [14], [15], [25]. However, due
to the high variability in phone orientation and movement in
general, none of these works includes the bag as a location,
even though literature reports it as the most commonly used
location together with the pocket [24]. Recent work by Hen-
praserttae et al. [16] showed that location-specific models can
improve performance of the activity recognition models, but
the author did not propose an automatic way to determine
phone location. Finally, the work by Kelly and Caulfield [18]
introduced phone location classification, showing performance
improvement of 9.2% precision and 6.2% recall. However, the
proposed model is validated on a few subjects and during
walking only. Additionally, the authors did not include the bag
either, limiting the impact of dynamic changes in orientation
on the classification process.

B. Walking Speed Estimation using Smartphones

Walking speed estimation methods based on wearable
sensors can be classified into two categories: machine learning-
based methods [6], [11], [26] and kinematic models [27].
When using a single sensor, especially an unconstrained smart-
phone, employing kinematic models is not feasible due to lack
of information on the limbs orientation and position over time.
However, machine learning approaches can capture the relation
between the sensors’ features and speed, beyond an explicit
kinematic model. Most previous work that applies machine
learning methods to walking speed estimation assumes that
there are one or more accelerometers at fixed positions on
the body [8]. However, when using a smartphone, walking
speed estimation suffers from all of the above mentioned
problems: reduced accuracy was reported when varying both
phone location and orientation [28]. Additionally, walking
speed estimation models suffer from additional limitations.
Not only the models are often developed considering a single
location and orientation, with the phone fixed on the body, but
protocols include walking periods only [6]. However, accurate
detection of walking speed requires first to be able to detect
walking periods, regardless of phone location and orientation.
Even when the phone location and orientation issues were
taken into account, the system was validated on a very small
number of subjects and activities [7], limiting the practical
applicability of such systems.

C. Personalization of Smartphone based Models

Recent work by Weiss and Lockhart [29] compared activity
recognition accuracy when using subject independent and
dependent data, showing significant increases in performance
when using the latter. Similar results can be obtained when
developing walking speed models. While it is clear that
including personal data in the models improves accuracy of
activity recognition and walking speed estimation, practical
approaches aiming at providing such personalized data are
still lacking. Longstaff et al. [30] investigated both active
and semi-supervised learning to include personal data in the
activity recognition models. The authors showed improvement
in performances for poor classifiers of about 6-8%. Some of
these methods are limited by the need of user interaction to
provide personal data (e.g. active learning). Active-learning,
for example, requires the user to label personal data from time
to time, but while it is rather straightforward to provide input
about activity type, we are typically unaware of the speed we
are walking at. Thus, we propose to personalize the models
in a different way, exploiting the sensory-rich information
which can be derived from todays’ smartphones. While other
methods aim at using one or more pre-trained classifiers to
label new data, and re-train such classifiers (e.g. co-training),
our approach aims at automatically gathering new reference
data for a specific user using the phone’s sensors (i.e. GPS),
and re-calibrate walking speed models trained independently
of the subject.
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Fig. 1. Block diagram of the activity recognition and personalized walking
speed estimation system architecture. For activity recognition, we implemented
location-independent models as well as location recognition+location-specific
models. Different subsets of the smartphone’s sensors are used for both loca-
tion recognition and activity type recognition. The walking speed estimation
system architecture is divided into three main parts; 1) Subject-independent
models are built using treadmill reference data. 2) GPS data during a self-
paced walk outdoor is used to determine the offset with respect to the subject-
independent walking speed estimation. Finally, 3) the offset is applied to
personalize walking speed estimation for a certain person.

III. ANALYSIS APPROACH AND METHODOLOGY

This section covers the approach we used to analyze the
role of different sensors and features for the implemented
models. A block diagram of the system architecture is shown
in Fig. 1. In order to provide reliable walking speed estimation
using smartphones, we first investigated role of accelerometer
(un-filtered, band passed filtered and transformed with respect
to the coordinate systems), gyroscope and barometer sensors
for phone location recognition and activity type recognition
using either location-independent or location-specific models.
Based on the activity recognition models recognizing the
walking activity, we performed the walking speed estimation
task. Then, we introduce a methodology combining multiple
smartphone’s sensors to automatically personalize walking
speed estimates, by acquiring new reference during a self-
paced outdoor walk.

A. Activity Recognition

For location-specific modeling, we considered two phone
wearing locations (bag and pocket), since these two locations
are reported as the most commonly used [24]. Device orienta-
tion was not controlled, leaving freedom to the participants to
put the phone in their bag or pocket in any orientation. Since
data recording was manually started before each activity, vari-
ability in orientation was even higher, allowing the participants
to change orientation between different activities. The activity
recognition analysis focuses on three aspects related to the
smartphone’s sensors, orientation and location:

1) To determine which accelerometer features are most
robust to sensor orientation variability: accelerometer features
(ACCxyz) were divided into three groups. The first group com-
prises un-filtered features - i.e. features including the effect of
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Fig. 2. a) Example of recorded GPS data, showing the low resolution of
the signal, which jumps by 0.5 or 1 km/h between consecutive data points.
b) Positive correlation between differences in estimated walking speed (from
subject independent models) and GPS data, and differences in estimated
walking speed and reference treadmill data.

gravity - referred to as Axyz . The second group includes band
passed features only - i.e. features where the static component
due to gravity has been removed (ABPxyz). Finally, the third
group of features refers to features transformed with respect to
the coordinate system, ATxyz . The most discriminative feature
set is used for further analysis.

2) To assess which smartphone’s sensors are most useful in
discriminating between activity classes: on top of accelerom-
eter features, we included gyroscope (Gxyz) and barometer
(Bm) data to determine the impact of such sensors in both
phone location recognition and activity type recognition.

3) To assess the importance of smartphone location for the
activity recognition task: location-independent models as well
as combinations of location recognition + location-specific
models were implemented to evaluate the impact of phone
location recognition when rich multi sensor information is
combined, as well as the impact of phone location misclas-
sification on the overall activity recognition accuracy (see Fig.
1).

B. Personalized Walking Speed Estimation

GPS data can provide speed information during outdoor
self-paced walking, thus providing reference speed together
with acceleration, without the need for a treadmill or labo-
ratory test. Therefore, we hypothesized that GPS speed data
(GPSs) during a short, self-paced outdoor walk could be used
to re-calibrate and personalize subject-independent walking
speed models developed using treadmill data at the gym. Our
assumption is based on the fact that Considering that the
GPS signal acquired with smartphones is often inaccurate and
provides low resolution (see Fig. 2 a), we used it to determine
under and overestimations of the subject independent walking
speed models, and not the actual difference between the
models. More specifically, our approach is divided into three
steps (see Fig. 1). As commonly reported, we first 1) devel-
oped subject-independent models using the smartphone’s data
as well as treadmill-derived reference speed (multiple linear
regression models). Secondly, 2) we collected data during a
short self-paced walk outdoor, and used this data to determine
under or over-estimations of the subject-independent walking
speed model for a specific person. Finally 3), the walking
speed estimate is adapted (applying a person-specific offset)



based on possible under or over-estimations of the subject-
independent model. Fig. 2 b) highlights the feasibility of this
approach. Even though GPS data is low resolution, there is a
consistent positive correlation between differences in estimated
walking speed (from subject independent models) and GPS
data, and differences in estimated walking speed and reference
treadmill data (p = 0.0012 < α). Thus, GPS data points out
if the subject independent models is under or over-estimating
walking speed for a certain person.

IV. IMPLEMENTATION

A. Features

Features were used to derive location recognition, activity
recognition and walking speed estimation models. Location
recognition was performed to classify between the bag and
pocket locations. Activity recognition was performed to clas-
sify the seven clusters of activities introduced in Table I,
independently of the smartphone orientation. For location
and activity recognition models we used only time-domain
features to limit the computational complexity and ease fu-
ture embedded implementations of the proposed algorithms,
since these algorithms should run continuously. Table II lists
all features and the sensors from which they were derived.
Accelerometer data from the three axes was either used without
filtering (Axyz), band passed filtered (ABPxyz) to remove
the static component due to gravity - reducing orientation-
dependance - or transformed with respect to the coordinate
system (ATxyz), as proposed in literature. Barometer signals
were computed over windows of 8 seconds instead of 4, while
GPS speed was determined buffering the most recent data
points reported by the smartphone as highly accurate. GPS
speed during walking was discarded if below 2.5 km/h or above
6 km/h. The importance of different features for the location
and activity recognition tasks was investigated by selecting
only subsets of the features listed in Table II. In particular,
we first analyzed which accelerometer feature set was most
discriminative, among Axyz , ABPxyz and ATxyz . Then, the
most discriminant accelerometer-only feature set was extended
with gyroscope (Gxyz) and barometer (Bm) data to analyze the
impact of such sensors and features on classification accuracy.

In addition to accelerometer and gyroscope time-domain
features, we extracted frequency-domain features for walking
speed estimation models. These models should run for periods
of time significantly lower compared to the location and activ-
ity recognition systems, thus allowing for more computational
power. In particular, we extracted signal power and frequency
peaks of the accelerometer signal.

B. Smartphone Location Recognition

We adopted a constant set of parameters for the classifier
type of the location recognition system and varied the features
used in order to understand what is the contribution of different
sensors in determining smartphone location. We selected a
time window of 4 seconds, which is short enough to detect
short breaks in sedentary time, and long enough to capture the
repetitive patterns of some activities (e.g. walking or running),
except for the barometer data, which was calculated over the
last 8 seconds of data to provide a more robust signal. Given
the positive results in past research on activity recognition,

TABLE I. DISTRIBUTION OF THE ACTIVITIES INTO THE SEVEN
CLUSTERS USED FOR ACTIVITY RECOGNITION.

Cluster name Original activities
Sedentary sitting, standing
Household kitchen work (washing dishes)
Walking walking on a treadmill at 2.5, 3, 3.5, 4, 4.5,

5, 5.5 and 6 km/h, walking at 3 km/h and
5% inclination, walking at 3 km/h and 10%
inclination, walking outdoor self-paced

Walking upstairs walking three flights of stairs, upstairs
Walking downstairs walking three flights of stairs, downstairs

Biking biking outdoor self-paced
Running running on a treadmill at 7 km/h

TABLE II. SENSORS AND FEATURES USED FOR PHONE LOCATION
RECOGNITION, ACTIVITY RECOGNITION AND WALKING SPEED

ESTIMATION MODELS.

Sensor Features
Accelerometer Axyz: mean and standard deviation of

the signal, ABPxyz: mean squared signal,
interquartile range of the signal, ATxyz:
mean squared signal, interquartile range of
the signal, mean and standard deviation of
the signal

Gyroscope Gxyz: mean squared signal, interquartile
range of the signal, mean and standard
deviation of the signal

Barometer Bm: altitude difference in meters
GPS GPSs: speed

we selected Support Vector Machines (SVMs) as classifiers.
For the SVMs, we used a polynomial kernel with degree 5
(λ = 10, C = 1).

C. Activity Type Recognition

Activities listed in Section V were grouped into clusters
to be used for activity recognition. See Table I for a list
of the activities and clusters. As for the location recognition
models, we adopted a constant set of parameters for the
classifier type of the activity recognition system and varied the
features used in order to understand what is the contribution
of different sensors in determining the activity performed by
the smartphone carrier. For each combination of features used,
we implemented a single activity recognition model, as well
as location-specific activity recognition models using only data
collected in the bag or pocket location. For all classifiers we
selected a time window of 4 seconds, except for the barometer
data, which was calculated over the last 8 seconds of data
to provide a more robust signal. We selected Support Vector
Machines (SVMs) as classifiers. For the SVMs, we used a
polynomial kernel with degree 5 (λ = 10, C = 1). Addition-
ally, we down sampled our dataset during model development,
to avoid training poor classifiers due to a imbalanced dataset
with predominantly walking data. Even though the classifiers
were trained with less data, validation is performed using all
data from the left-out subjects (see Section V).

D. Personalized Walking Speed Estimation

The personalized walking speed estimation methodology
introduced in this paper (see Section III for details) relies
on subject-independent walking speed estimation models. The



walking speed estimation models were implemented as mul-
tiple linear regression models which predict walking speed
using as features the individual’s height and the accelerometer
and gyroscope features listed in Table II, plus the additional
frequency-domain features.

Given the poor resolution of the GPS signal (see Figure
2 a), we did not rely on the actual difference between the
estimated and GPS speeds to correct the subject-independent
walking speed estimation. On the other hand, after calculating
the difference between the estimated walking speed and the
GPS speeds for each participant, we determined the actual
person-specific offset to apply - as percentage of the actual
difference -, according to two criteria: 1) we analyzed the
performance of the personalized walking speed estimation in
terms of average reduction in RMSE over all participants, 2)
we analyzed individual errors for participants for which the
proposed methodology did not provide error reduction.

Personalized walking speed estimation (PerWspeed) can be
derived as follows: PerWspeed = SubjIndWSpeed + offset,
Where offset = coeff ∗ Speeddiff . SubjIndWSpeed is
the subject independent walking speed estimate, coeff is the
main parameter to be determined and Speeddiff is the speed
difference between the estimated subject-independent walking
speed and the GPS speed during a self-paced short walk
outdoor.

V. EVALUATION STUDY

The dataset acquired in this work contains more than 26
hours of annotated data from 20 participants, consisting of
reference activity type, phone location, three axial acceleration,
three axial gyroscope, barometer and GPS data acquired from
a Google Nexus 4 smartphone.

A. Participants

Participants were twenty (14 male, 6 female) self-reported
healthy students or employees at Eindhoven University of
Technology. Mean age was 29.4 ± 5.1 years, mean weight
was 70.2± 9.9 kg, mean height was 1.76± 0.10 m and mean
BMI was 22.52± 1.93 kg/m2.

B. Experiment Design

Participants reported at the lab after being instructed on the
study protocol by the experimenter. The recordings consisted
of two sessions, a treadmill session at the gym and a free-living
session carried out both in a home-like setup and outdoor.
The gym session consisted mainly of walking, including the
following activities: walking at 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and
6 km/h, walking at 3 km/h, 5% inclination, walking at 3
km/h, 10% inclination, running at 7 km/h. The indoor part
of the second session consisted in: walking upstairs, walking
downstairs, kitchen activities (e.g. washing the dishes) and
sedentary behavior (e.g. sitting and standing). Finally, the
outdoor part of the second session included: walking self-paced
and biking self-paced. All activities lasted between 1 and 10
minutes, and were repeated twice by all participants in order to
collect data for both the pocket and bag locations. Before each
activity the participants were asked to place the smartphone
in the pocket or bag in any random orientation, without pre-
defined positions or instructions.
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and pocket classes. a) Results obtained with different sets of accelerometer
features, b) Combination of the best accelerometer features (A) with gyroscope
and barometer features.

C. Statistics and Performance Measures

Models were evaluated using leave-one-subject-out eval-
uation. Performance of the activity recognition models was
evaluated using the F-score, thus combining precision and
recall for each cluster of activities. The F-score was used
to provide a fair comparison given the unbalanced dataset
collected, where walking activities are predominant. Results
for walking speed estimates are reported in terms of Root Mean
Square Error (RMSE). Paired t-tests were used to compare the
F-score or RMSE between different models. Significance was
assessed at α < 0.05.

VI. RESULTS

A. Smartphone Location Recognition

Smartphone location recognition F-score was 0.87 when
using band passed accelerometer features (ABP ), 0.77 when
using transformed features (AT ) and 0.96 when using un-
filtered accelerometer features (A).Including gyroscope fea-
tures (G) significantly improved results (p = 0.04 < α, F-
score = 0.97). Recognition rates were similar for the bag and
pocket smartphone locations (see Fig. 3).

B. Activity Type Recognition

Activity recognition performance was significantly im-
proved when using a multi-sensor approach, with the barom-
eter being the most effective sensor due to the impact on
recognizing walking upstairs and downstairs activities. Overall,
activity recognition F-score for location-independent models
(see Fig. 4) ranged between 0.49 and 0.64 when accelerometer
data only was used. F-score increased to 0.65 when including
gyroscope data and to 0.89 when including barometer data.
Activity recognition F-score for location-specific models, in-
cluding the effect of misclassification, ranged between 0.49
and 0.67 when accelerometer data only was used. F-score
increased to 0.70 when including gyroscope data and to 0.91
when including barometer data (see Fig. 6).
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with different sets of accelerometer features, b) Combination of the best
accelerometer features (A) with gyroscope and barometer features. c) Average
F-score for all clusters of activities, d) Importance of single sensors when used
on top of the accelerometer data (% difference in F-score).

Performance reduction between models assuming perfect
smartphone location recognition and models including misclas-
sification error reached 53% for accelerometer-only models,
and decreased to less than 1% for models combining ac-
celerometer, gyroscope and barometer data (reduced misclassi-
fication effect). Activity recognition for location-specific mod-
els was significantly better compared to location-independent
models (p=0.0010, 2% F-score increase). Differences were be-
tween 0 and 11% for the seven clusters of activities. The high-
est improvements in location-specific models were reported
for activities where barometer features could not discriminate
more than accelerometer-only features, for example walking
and biking activities (F-score difference between 4 and 11%).
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Fig. 6. F-score for the location-specific activity recognition models. All
results include the impact of smartphone location misclassification (i.e. ap-
plying the wrong location-specific model). a) Results obtained with different
sets of accelerometer features, b) Combination of the best accelerometer
features (A) with gyroscope and barometer features, c) Average F-score for
all clusters of activities, d) Importance of single sensors when used on top of
the accelerometer data (% difference in F-score).

C. Personalized Walking Speed Estimation

After calculating the difference between the estimated and
GPS speeds for each participant, we determined the actual
person-specific offset to apply - as percentage of the actual
difference -, according to two criteria: 1) we analyzed the
performance of the personalized walking speed estimation in
terms of average reduction in RMSE over all participants, 2)
we analyzed individual errors for participants for which the
proposed methodology did not provide error reduction.

Figure 7 a) shows that RMSE can be reduced by up
to 12.4% when 45% of the difference between the subject-
independent estimated speed and the GPS speed is used as the
offset to personalize walking speed estimation (average of bag
and pocket models). However, such error reduction penalizes
some individuals, for which the proposed normalization does
not work as expected. Figure 7 b) shows the percentage error
(maximum and average) for such subjects. Since our aim is
to improve walking speed estimation error at the individual
level, there is a trade-off between overall RMSE reduction
(Fig. 7.a) and individual error for those subjects for which the
methodology does not perform optimally (Fig. 7.b). Taking
into account these criteria we chose 25% as the optimal
coefficient (indicated as % difference between estimated and
GPS speed in Fig. 7 a) to calculate the offset. Correlation
between the predicted walking speed during the outdoor self-
paced walk with the phone in the pocket and the predicted
walking speed during the outdoor self-paced walk with the
phone in the bag, computed for all subjects, was significant
(p = 0.045 < α), satisfying the assumption that persons walk
self-paced at approximately a constant personal speed. RMSE
for location-specific walking speed models was lower than for
location-independent models regardless of the features used
(see Fig. 5). Error reduction were between 25 and 39% (from
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Fig. 7. Trade-offs between overall and individual accuracy of the person-
alization methodology. a) RMSE percentage reduction (average of bag and
pocket models for all subjects) when applying different offsets to calculate
personalized walking speed. b) Maximal and mean individual error for those
subjects for which the methodology does not perform optimally, in relation to
the different offsets applied to calculate personalized walking speed.

0.73 km/h to 0.43 km/h for the best accelerometer-only model).
Gyroscope features as well as frequency-domain features did
not significantly reduce error (p = 0.367 > α). RMSE was
reduced by 8.8% when personalizing the walking speed estima-
tion according to the proposed methodology (p = 0.0012 < α,
from 0.43 to 0.39 km/h), see Fig. 8.

VII. DISCUSSION

In this work, we proposed a method to personalize walking
speed estimates combining multiple smartphone sensors. Our
aim was to develop models and algorithms able to provide
walking speed estimates both accurate at the individual level
and realistic in free-living conditions. To achieve our goal, we
covered a wide set of topics, ranging from sensor location and
orientation for activity recognition, to data fusion of multiple
sensors and personalization techniques merging such sensors’
data. Most importantly, we validated our algorithms on an
extensive datasets of 20 participants performing activities of
daily living in the lab as well as in self-paced outdoor settings,
allowing participants to place the smartphone in the two most
commonly used locations (bag and pocket [24]), and in random
orientations. In this section we discuss the main findings and
results, with respect to the points highlighted in Section III. We
start discussing practical aspects, such as activity recognition
and the phone location and orientation issues, then move to
personalized walking speed estimations.
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Fig. 8. Percentage reduction in RMSE (km/h) when personalizing the walking
speed estimation according to the proposed methodology. RMSE is decreased
for all subjects but one, average is 8.8%.

A. Activity Recognition

In the presented analysis, we made the following findings:

1) To determine which accelerometer features are most
robust to sensor orientation variability: according to our
analysis (Fig. 3, 4 and 6), both location recognition and
activity recognition performance improved when using un-
filtered accelerometer features (Axyz). While previous re-
search tried to reduce variability in orientation by either using
orientation-independent features (e.g. our ABPxyz set), or
by transforming the accelerometer signal with respect to the
reference coordinate system (i.e. the ATxyz feature set), we
did not find improvement in performance when applying such
techniques. We believe both strategies are affected by practical
limitations sometime excluded by some of the previous works.
For example, when the phone is fixed in a certain position on
the body, transformed accelerometer features (ATxyz) can most
likely reduce error due to orientation variability. However, most
of the time the phone orientation is continuously changing (e.g.
when the phone is moving inside a bag).

2) To assess which smartphone’s sensors are most useful
in discriminating between activity classes: our results show
accelerometer and barometer as the main contributors to accu-
rate activity type recognition. While gyroscope data was found
useful in discriminating phone location (p = 0.04 < α, F-score
= 0.97) - together with accelerometer data - probably due to
the swinging pattern peculiar of carrying the phone in a pocket,
compared to the more random movement when the phone is
in a bag, the impact on activity recognition was minimal (see
Fig. 4 and 6). We speculate the scarce impact of gyroscope
data for the activity recognition task is mainly due to the poor
information that can be extracted from such sensors when the
phone is loosely connected to the body. In different situations,
for example when a wearable sensor is placed on the body,
improvements in accuracy are often reported.

3) To assess the importance of smartphone location for
the activity recognition task: location-specific activity recogni-
tion models outperformed location-independent models (p =
0.0010 < α). Feasibility of location-specific models is con-
firmed by the high accuracy of the phone location recognition
model, whose misclassification causes a decrease in F-score
of less than 1%. The overall increase in F-score when using
location-specific models was 2%, due to the fact that integrat-
ing multiple sensors can provide accurate activity recognition
for certain clusters of activities, regardless of phone location
and orientation (e.g. including barometer data to detect walking
upstairs and downstairs). However, for activities involving
similar and irregular motion (e.g. walking or biking while
carrying the phone in a bag), improvements ranged between 4
and 11%, showing the importance of location-specific models
for accurate physical activity monitoring using a smartphone
in unconstrained settings.

B. Personalized Walking Speed Estimation

We introduced a novel methodology to reduce walking
speed estimation error at the individual level. Our hypothesis
was that GPS data during a short self-paced walk could be used
to determine the performance of subject-independent walking
speed models on a specific person, and adapt such estimate to
better fit the person. The feasibility of our methodology was



confirmed when computing the correlation between treadmill
data and self-paced walking data. The difference between the
speed measured by the treadmill and the subject-independent
speed estimated by the model was positively correlated with
the difference between the speed measured by the GPS and the
subject-independent speed estimated by the model. However,
the inaccuracy of the GPS signal, and especially the low res-
olution (0.5-1km/h), prevented us to use the actual difference
between the estimated speed and the GPS speed as offset to
adapt the estimate at the individual level. Analyzing different
coefficients (% of offset to be used to personalize the estimate),
we found the range between 25 and 40% to be optimal to
reduce RMSE. Better hardware might allow for a different
approach, where the actual difference in speed could be used
to personalize the estimate instead of only a percentage of it.
However, the methodology would still hold. For the task of
walking speed estimation, standard personalization techniques
typically used for activity recognition cannot be used. Active-
learning, for example, requires the user to label personal data
from time to time, but while it is rather straightforward to
provide input about activity type, we are typically unaware of
the speed we are walking at. Thus, we proposed a different
approach, based on automatically integrating multiple sensors
available in any smartphone, to personalize the estimate at the
individual level by acquiring new reference data during a short
walk outside.

C. Limitations

We recognize limitations in our work. Even though we took
care of limiting the computational complexity of our system,
by using only time-domain features for location and activity
recognition models, we did not implement our models on a
smartphone yet. Secondly, our methodology to personalize
walking speed requires GPS data, which increases power
consumption significantly. While literature already showed that
energy-efficient activity recognition on mobile devices is fea-
sible, [31], an adaptive sampling technique able to determine
when the user is walking outside should be implemented
for practical usability of the proposed solution. However,
offline processing is a natural first step when validating new
techniques and methodologies.

Another limitation of our work is due to the limited
locations and orientations adopted during data collection. We
choose the two most commonly reported locations (i.e. bag and
pocket), and introduced variability by letting the participants
place the phone in their left or right pocket and without prede-
fined instructions on phone orientation. Also, participants were
asked to reposition the phone between different activities, in
order to introduce even more variability in phone orientation.
However, our approach is not extensive of all the locations
where a phone can be carried, and the validity of the proposed
models should be validated in different settings.

VIII. CONCLUSIONS

In this paper, we proposed a personalization approach
to walking speed estimation. In order to build models ro-
bust to free living settings, we investigated different phone
locations and orientations to distinguish activities of daily
living. Location-specific activity recognition models could
significantly improve activity recognition performance. The

activities to benefit the most from this approach were the ones
involving similar motion patterns, such as walking or biking
with the phone in a bag. This finding highlights the importance
of this approach for walking speed estimation. Our proposed
methodology for personalizing subject-independent walking
speed estimation models used data during a short self-paced
walk outdoor, and could reduce walking speed estimation error
by 8.8% on average, by combining accelerometer and GPS
information. Overall, we conclude that practical walking speed
estimation monitoring using a smartphone is feasible.
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