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ABSTRACT
Physical Activity (PA) is one of the most important deter-
minants of health. Wearable sensors have great potential for
accurate assessment of PA (activity type and Energy Expen-
diture (EE)) in daily life. In this paper we investigate the
benefit of multiple physiological signals (Heart Rate (HR),
respiration rate, Galvanic Skin Response (GSR), skin hu-
midity) as well as accelerometer (ACC) data from two loca-
tions (wrist - combining ACC, GSR and skin humidity - and
chest - combining ACC and HR) on PA type and EE esti-
mation. We implemented single regression, activity recogni-
tion and activity-specific EE models on data collected from
16 subjects, while performing a set of PAs, grouped into
six clusters (lying, sedentary, dynamic, walking, biking and
running). Our results show that combining ACC and phys-
iological signals improves performance for activity recogni-
tion (by 2 and 8% for the chest and wrist) and EE (by 36 -
chest - and 35% - wrist - for single regression models, and by
18 - chest - and 46% - wrist - for activity-specific models).
Physiological signals other than HR showed a coarser rela-
tion with level of physical exertion, resulting in being better
predictors of activity cluster type and separation between
inactivity and activity than EE, due to the weak correlation
to EE within an activity cluster.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life & medical sciences—
Health

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Accurate monitoring of physical activity (PA) is key in

unveiling the relation between aspects of human behavior
and health status. Especially in today’s industrialized so-
cieties, the population’s physical activity level is decreasing
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below the recommended levels. As a result, new epidemics
(e.g. obesity, diabetes) are spreading all over the world.

New technologies seamlessly integrated in everyone’s life,
able to monitor behavior objectively and non-invasively, can
provide unprecedented insights on the relations between PA
and health. Currently, epidemiologists use accelerometers
(ACC) and heart rate (HR) monitors to objectively gather
information about PA [11, 8]. For ACC, the rationale behind
this approach is that body motion measured close to the
body center of mass, is linearly related to EE. On the other
hand, HR monitors exploit the linear relation between HR
and oxygen uptake. Limitations of these approaches are the
inability of single ACC worn close to the body center of mass
to detect low and upper body motion, the low accuracy of
HR monitors during sedentary behavior and the need for
individual calibration [20, 4].

Recent developments in objective monitoring of PA are
moving towards activity-specific EE algorithms [2, 6, 20].
Activity-specific EE algorithms first recognize the activity
performed, and then apply a model developed for the specific
activity, showing consistent improvements compared to pre-
vious methods. Among these activity-specific models, the
ones combining HR and ACC consistently showed better re-
sults compared to ACC only [2]. However, important limita-
tions on previous studies are impairing our understanding of
the role of physiological signals in PA assessment. While the
relation between HR and EE has been covered in literature,
only recently HR has been introduced in activity-specific
models to improve EE estimation accuracy during moder-
ate to intense activities [2, 17]. Other signals (e.g. Galvanic
Skin Response (GSR), skin temperature) have been used to
develop proprietary models not accessible by the research
community, thus limiting our understanding of how these
signals can contribute to the estimate [22].

Another aspect that should be taken into account, is the
relation between physiological data, ACC data and activ-
ity type, since PA monitoring is not anymore limited to the
assessment of one single parameter (i.e. EE). The relation
between activity type and physiological signals was explored
only partially in previous research [20, 15], and should be
extended, since the recently widespread use of single sensor
devices in locations where movement is weakly related to EE
(e.g. the wrist) can cause inaccuracy in PA assessment. Fi-
nally, differences found in literature on PA monitoring using
wearable sensors, regarding protocols (e.g. activities per-
formed), subjects (e.g. anthropometric characteristics), ref-
erence systems (e.g. indirect calorimeters, DLW, etc.) and
evaluation metrics (Root Mean Square Error (RMSE), ac-



curacy, etc.), prevent meaningful comparison of previously
published results.

In this paper we analyze the benefit of ACC and phys-
iological data measured at different on-body sensor loca-
tions on PA type and EE estimation. We collected inertial
(ACC), physiological (HR, GSR, respiration, skin humidity)
and reference (activity type, EE) data using two wearable
sensors, one on the chest (ACC, ECG, HR) and one on the
wrist (ACC, GSR, skin humidity) and an indirect calorime-
ter (Cosmed K4B2 - V O2, O2 and respiration rate), while
a total of 16 subjects performed a set of physical activi-
ties, clustered in groups representative of human behavior
in daily life. More specifically, our contribution is twofold:

1. We implemented single and activity-specific models
combining ACC and physiological data, and selected
metrics to evaluate the impact of each signal (or com-
bination of signals) in activity type recognition and
EE estimation, analyzed on the same set of subjects
and activities. We evaluated the performance regard-
ing activity type recognition accuracy and explained
variations in EE within an activity cluster as well as
explained variations in EE over all activities.

2. We analyzed trade-offs between on body position, ac-
tivity recognition and EE estimation accuracy. We
show that HR is the best predictor of EE, given the
direct relation to oxygen uptake, while other physio-
logical signals (GSR, skin humidity, respiration) have
a coarser relation to level of physical exertion, which
makes them better predictors of activity type clusters
(when combined with ACC), than EE. We provide
guidelines for future PA research that makes use of
wearable sensors to monitor PA, using wearable sen-
sors which combine ACC and physiological data.

2. RELATED WORK

2.1 Single Models
ACC and HR monitors are the most commonly used sin-

gle sensor devices in epidemiologic studies. Shortcomings of
single regression models are; a) the accuracy of the mon-
itor is highly dependent on the activities used to develop
the model, b) a single model does not fit all the activities,
since the slope and intercept of the regression model change
based on the activity performed while data is collected [11].
As a result, even when motion intensity (or activity counts)
is representative of EE, the output can be misleading. In
[10] the authors had to remove biking activities from their
evaluation, due to the inability of their system to capture
EE changes when there is limited motion close to the body’s
center of mass. HR monitors suffer from different problems,
the most common being the low accuracy during sedentary
behavior [8], given that HR is affected by other factors (e.g.
stress), and the need for individual calibration [4].

2.2 Machine Learning-Based Models
The latest algorithms go towards three directions, all using

pattern recognition and machine learning techniques.
1) Some authors applied machine learning methods to di-

rectly estimate EE from ACC features, using for example
neural networks [16, 12]. However these approaches suffer
from the same limitations of the counts-based approaches,

being unable to capture the peculiarities of the relation be-
tween ACC features and EE during different activities [7].

2) Others, extended the single model approach, perform-
ing activity recognition over a pre-defined set of activities,
and then applying different methods to predict EE [6, 2, 21,
17, 20] (activity-specific models).

3) Finally, unsupervised approaches were introduced by
the authors in [9]. Unsupervised clustering was used to avoid
exact activity detection and the need for time consuming
activity labeling during data collection, still providing the
advantage of dividing the EE estimation problem into sub-
problems, as done by activity-specific models [7]. However,
this approach showed sub-optimal performance compared to
activity-specific models [9].

Given the significant amount of work adopting activity
recognition as a first step to estimate EE (method 2 ), and
the consistent improvements obtained [7, 9, 2, 1], we believe
this is the best methodology to follow when developing EE
estimation algorithms. Activity-specific models extended
approaches based on single models by performing activity
recognition over a predefined set of activities, and then ap-
plying different methods to predict EE [2, 20, 17, 6], based
on the activity. One approach [20] is to apply a different
regression equation for each activity classified. The regres-
sion models typically use ACC features and anthropometric
characteristics as independent variables. Another approach
is to assign static values from the compendium on physical
activities to each one of the clusters of activities [6]. As-
signing static values showed limitations during moderate to
vigorous activities in a recent comparison between activity-
specific models, since static values cannot capture differences
in EE within one cluster [2]. Intra-individual differences in
EE for an activity are caused by the fact that moderate to
vigorous activities can be carried out at different intensities
(e.g. walking at different speeds), resulting in different lev-
els of EE. Activity-specific linear regression models require
ACC and HR features to capture these differences. In [1], a
multi-sensor system composed of three ACC was developed.
The authors extended the static approach of [6], developing
a custom MET table, which takes into account the HR at
rest. In [17] HR and ACC were combined as well. The sys-
tem consisted of three sensors, two ACC and a HR belt, and
could classify six types of activities. In [2] we introduced a
combined approach using static values for sedentary clusters,
and regression equations for moderate to vigorous clusters,
reducing EE estimation errors up to 31% compared to other
state-of- the-art activity-specific algorithms.

2.3 Comparisons
A recent review reimplemented different ACC and HR

based methods [2]. Activity-specific multiple linear regres-
sion models combining ACC and HR showed consistent im-
provements in EE estimation accuracy compared to algo-
rithms using or ACC-only data - during moderate to vigor-
ous physical activities. Other papers compared multi-sensor
devices (e.g. the Actiheart which combines ACC and HR or
Bodymedia’s armband which combines GSR, skin temper-
ature, heat flux, and ACC) during different activities [19].
Results showed that combinations of physiological and ACC
data are better predictors of EE than ACC alone [22]. Un-
fortunately, some of these devices do not provide details on
the algorithms, preventing PA researchers from understand-
ing how different signals contribute to the final results.



3. RELATING ACCELEROMETER AND PHYS-
IOLOGICAL DATA TO PHYSICAL AC-
TIVITY TYPE AND EE

This section covers the motivations behind the use of dif-
ferent ACC and physiological data in single regression as well
as activity-specific EE models. We cover the signals used
in our analysis; ACC, HR, respiration rate, GSR and skin
humidity. These sensor locations and types were selected
based on current availability and user comfort, in order to
provide useful insights for research at the algorithmic level.
Fig. 1 shows the behavior of each signal during the activities
included in our protocol, as well as reference activity type
(color coded) and reference EE (in gray).

3.1 Acceleration
ACC have been used since the beginning of PA research.

ACC typically use activity counts, a unit-less measure repre-
sentative of whole body motion, as the independent variable
to predict EE [11]. Alternatively, ACC have been used in
both stages of activity-specific models, to first recognize an
activity, and then model inter-individual differences in EE
for an activity cluster [2]. Fig. 1 shows the weak relation
between activities involving limited motion and EE (e.g. bik-
ing) or high level of motion and low EE (e.g. sedentary or
High Whole Body Motion/Dynamic activities for ACC at
the wrist), as well as the good correlation between activities
involving high level of motion and EE (e.g. walking).

3.2 Heart Rate
The widespread use of HR monitoring is due to its ease of

measurement and its reflection of the relative stress placed
on the cardiopulmonary system due to PA. However, HR can
also be elevated by emotional stress, which is independent
of any change in oxygen uptake [8]. The high correlation
between HR and EE for active clusters (e.g. walking, biking,
running) is shown in Fig. 1. The relation is weaker for
inactive clusters (e.g. lying and sedentary).

3.3 Respiration
The use of respiration rate in PA research is very limited.

However, in [18] authors improved the EE estimation accu-
racy by combining ECG derived respiration rate and HR,
compared to HR alone. During certain dynamics, for exam-
ple when going from moderate to light activities, respiration
rate might better represent the return of oxygen uptake to
baseline, compared to HR. The relation between respiration
rate, EE and activity type is shown in Fig. 1.

3.4 Galvanic Skin Response
Galvanic Skin Response (GSR) measures skin conductiv-

ity. Skin conductivity is affected by sweat due to physical
exertion as well as emotional stimuli such as psychological
stress. GSR is widely used in stress research, but given the
strong relation between skin conductance and sweat it has
been used as predictor of EE [22]. The coarse relation be-
tween GSR, EE and activity type is shown in Fig. 1.

3.5 Skin Humidity
Skin humidity is also affected by sweat, and looking at

continuous measurement of skin humidity in conjunction
with data collected from other sensors could reveal the body’s
level of physical exertion (see Fig. 1).

Figure 1: ACC and physiological signals during all
the activities of our protocol, for one subject. From
top to bottom: motion intensity from the chest, and
wrist, HR, respiration rate, GSR level, skin humid-
ity. Reference activity type is color coded, reference
EE is shown in gray. Note the coarser relation be-
tween GSR, skin humidity and EE, and the higher
correlation of HR with EE. ACC data is highly cor-
related to EE for some activities (e.g. running), and
weakly correlated for others (e.g. biking). ACC
data at the wrist is weakly correlated to EE com-
pared to ACC data at the chest. GSR and skin
humidity seem to be good predictors of activity and
inactivity.



4. APPROACH
This section covers the approach we used to analyze the

role of different physiological signals in PA monitoring. More
specifically, we selected a set of methods (single regression
and activity-specific) and metrics to evaluate how and when
PA assessment can be improved by combining ACC and
physiological data. Our analysis is structured as follows:

1. Each signal (ACC or physiological) was evaluated us-
ing Pearson’s correlation coefficient between the signal
and EE, over all the activities of our protocol. This
evaluation highlights which signals are good predic-
tors of EE during a range of activities of daily life,
regardless of individual differences. Additionally, for
each signal a single regression model is implemented
to evaluate the accuracy of subject independent mod-
els using such signal to estimate EE, and the Root
Mean Square Error (RMSE) as metric.

2. Each physiological signal is evaluated as feature in
support to ACC features for activity type recognition
models. This evaluation highlights which signals can
provide useful insights for activity type. The analysis
of the relation between activity type and physiologi-
cal signals is of rising importance, since the recently
widespread use of single sensor devices in locations
where movement is weakly related to EE (e.g. the
wrist) can lead to inaccuracy in PA assessment. Ad-
ditionally, the coarser relation between physiological
signals other than HR and EE (see Fig. 1), shows that
physiological signals might be better predictor of ac-
tivity cluster type than EE changes within an activity
cluster.

3. Each signal is evaluated using Pearson’s correlation co-
efficient between the signal and EE, for a single clus-
ter of activities. This evaluation highlights which sig-
nals show a linear relation to EE for a specific activity,
thus could serve as predictors of EE changes within a
cluster, since some clusters of activities can be carried
out at different intensities (e.g. walking at different
speeds). For each activity cluster a multiple linear
regression model is implemented to evaluate the ac-
curacy of such signal in estimating EE for a specific
cluster of activities, using the RMSE as metric.

All the analysis are performed considering single sensor
devices, to maximize user comfort. More specifically, we
combined ACC at the wrist with GSR and skin humid-
ity, and we combined ACC at the chest with HR. All the
activity-specific models are implemented using the method-
ology of [2] et al., including anthropometric characteristics
based on the type of activity performed.

5. METHODS

5.1 Participants
The target population considered for our work is healthy

adults, since we focus on disease prevention. Therefore, six-
teen (12 male, 4 female) healthy young adults took part in
the experiment. Mean age was 31.6±5.9years, mean weight
was 73.1±9.9kg, mean height was 176.3±10.1cm and mean
BMI was 23.46±1.69kg/m2. Imec’s internal Ethics Commit-
tee approved the study. Each participant signed an informed
consent form.

Figure 2: The two wearable sensors used in this ex-
periment. Imec’s ECG Necklace and Wristband.

5.2 Instruments
Two wearable sensors were used for data collection, imec’s

ECG Neckalce and Wristband (see Fig. 2). The ECG Neck-
lace was configured to acquire one lead ECG data at 256Hz,
and ACC data from a three-axial ACC at 32 Hz. Two gel
electrodes were placed on the participant′s chest. Imec’s
Wristband was configured to acquire phasic and tonic GSR
data at 128Hz, ACC data from a three-axial ACC at 32Hz
and skin humidity at 10.24Hz.

Breath-by-breath data were collected using the Cosmed
K4b2 indirect calorimeter. The Cosmed K4b2 weights 1.5kg,
battery included, and showed to be a reliable measure of
EE [13]. The system was manually calibrated before each
experiment according to the manufacturer instructions.

5.3 Experiment Design
Participants invited for recordings had to refrain from

drinking (except for water), eating and smoking in the two
hours before the experiment. The protocol included seden-
tary, lifestyle and sport activities (see Table 1). All activities
were carried out for a period ranging from 3 to 10 minutes,
with a 1 or 2 minutes break between sedentary activities.

We performed our comparative analysis on data collected
in laboratory settings. Even though performance for activ-
ities that were not part of the dataset should be assessed
outside of the lab, there is currently no reference system
able to measure breath-by-breath EE in unconstrained set-
tings. For example, DLW – which is the standard reference
system for EE in daily life – provides only TEE after one or
two weeks, averaging under and over-estimations.

5.4 Pre-processing
The dataset acquired in this work consists of reference

V O2, V CO2, three axial ACC from chest (A-C) and wrist
(A-W), ECG, respiration rate, GSR and skin humidity. A
Continuous Wavelet Transform based beat detection algo-
rithm was used to extract R-R intervals from ECG data,
which output was examined to correct for missed beats.
Breath-by-breath data acquired from the Comsed K4b2 was
resampled at 0.5Hz. EE was calculated from O2 and CO2.
The first minute of each activity were discarded to remove
non-steady-state data.



Table 1: Distribution of the activities into the six
clusters used for activity recognition.
Cluster name Original activities

Lying Lying down resting
Sedentary Sitting resting, desk work, writing,working

on a PC, standing still
HWBM Stacking groceries, washing dishes, clean-

ing and scrubbing, vacuuming
Walking Treadmill (flat: 3, 4, 5, 6 km/h, incline:

3km/h 10%))
Biking Cycle ergometer, low, medium and high re-

sistance level at 80 rpm
Running 7, 8, 9, 10 km/h on a treadmill

5.4.1 Activity Type Clusters
We split the activities of our protocol into inactive and

active clusters. In inactive clusters most of the EE is due
to Basal Metabolic Rate, once the activity has been recog-
nized, other features provide no extra information on EE. On
the other hand, active clusters account for a higher share of
Physical Activity Energy Expenditure, allowing for an anal-
ysis of how wearable sensors can provide information about
differences in EE during activities of daily life. We further
manually split the activities into six clusters related to the
activity type and involved motion patterns. We included
lying and sedentary as inactive clusters. We grouped sit-
ting and standing activities into one cluster since the three
main postures (lying, sitting and standing) are not recogniz-
able with a single sensor device. Additionally, we included
four active clusters, one representative of household activi-
ties and dynamic transitions between activities, namely the
high whole body motion cluster (HWBM or Dynamic) and
other three related to locomotion and active transportation,
namely walking, biking and running (see Table 1).

5.4.2 Feature Extraction and Selection
Features extracted from the ECG necklace and Wristband

raw data were used to derive activity recognition (on the six
activity clusters covered in Section 5.4.1) and EE models.

Accelerometer Feature Extraction: ACC data from both
sensors were segmented in 4 second windows, band-pass
(BP) filtered between 0.1 and 10Hz, to isolate the dynamic
component, and low-pass (LP) filtered at 1 Hz, to isolate
the static component. Time and frequency features were ex-
tracted from each window. Time features included; mean,
mean of the absolute signal, magnitude, mean distance be-
tween axes, variance, standard deviation, inter-quartiles range
and median. Frequency features included; spectral energy,
entropy, low frequency band signal power (0.1 − 0.75 Hz),
high frequency band signal power (0.75 − 10 Hz), frequency
and amplitude of the FFT coefficients. These features were
selected due to high accuracy showed in past research [20].

Physiological Feature Extraction: Three features were ex-
tracted from R-R intervals; mean, variance and standard de-
viation. Features extracted from phasic and tonic GSR data
were; mean skin conductance level, signal power, skin con-
ductance response rate and mean Ohmic Perturbation Du-
ration. The only feature extracted from skin humidity was
the mean. All features were extracted over non-overlapping
15 seconds windows.

Accelerometer Feature Selection: Feature selection for ac-
tivity type recognition was based on mutual information [5].
The feature set includes; mean of the absolute band-passed

signal, magnitude and inter-quartile range, median, variance
and standard deviation and main frequency peak and am-
plitude of the main frequency peak. Feature selection for
activity-specific EE models was based on how much varia-
tion in EE each feature could explain within one cluster of
activities. The process was automated using linear forward
selection. Anthropometrics features were added depend-
ing on the cluster, following the methodology for activity-
specific EE modeling presented in [2]. Additionally, we used
activity counts, calculated as mean of the absolute band-
passed signal summed over the three axis to implement single
ACC-based regression models.

Physiological Feature Selection: Features derived from phys-
iological signals were used for both activity recognition and
EE models. The most discriminative features were selected
based on correlation. Selected features were; mean HR,
mean skin conductance level, mean skin humidity and respi-
ration rate.

5.5 Models Implementation
We implemented activity recognition, single EE models

and activity-specific EE models (see Fig. 3).

5.5.1 Activity Type Recognition
We adopted a constant set of parameters for sliding win-

dow, sampling rate and classifier type of the activity recog-
nition. We selected a time window of 4 seconds, which is
short enough to detect short breaks in sedentary time, and
long enough to capture the repetitive patterns of certain ac-
tivities (e.g. walking or running). Given the positive results
in past research on activity recognition, we selected Support
Vector Machines (SVMs) as classifiers. For the SVMs, we
used a polynomial kernel with degree 5 (λ = 10, C = 1).

Figure 3: Models implemented in this work. Single
models combine all features in one regression model.
Activity-Specific models combine activity recogni-
tion and multiple regression models. Additionally,
we explored the use of combined ACC and physio-
logical signals for activity recognition (dashed line).



5.5.2 Activity Intensity Estimation (EE)
Within one activity cluster, EE can be better estimated

using activity-specific features, representative for EE changes
within the activity cluster (e.g. walking speed for walking).
Depending on the signals included in the model (ACC and
physiological) we created different EE activity-specific mul-
tiple linear regression models for each activity cluster.

5.6 Statistics and Performance Measures
Performance of the activity recognition models was eval-

uated using the percentage of correctly classified instances.
Performance measures used for EE were Pearson’s corre-
lation coefficient, and the RMSE. Results are reported in
terms of RMSE (leave one subject out cross validation) be-
cause of the large inter-individual variability that is typical
for EE estimates. Normalization procedures do exist (e.g.
kcal/kg), but do not take into account that EE during dif-
ferent activities is affected differently by body weight [3].
Pearson’s correlation coefficient is used to quantify the pre-
dictive power of different signals in estimating EE, without
being affected by inter-individual differences (average be-
tween subjects). As statistical analysis, we performed paired
t-tests. Significance level α was set to 0.05 for all tests.

6. RESULTS

6.1 Single Models
Correlation coefficient between the signals and EE was

0.74 for A-C, 0.64 for A-W, 0.93 for HR, 0.76 for GSR, 0.72
for respiration rate and 0.70 for skin humidity. Subject inde-
pendent RMSE was 2.16 kcal/min for A-C, 2.59 kcal/min
for A-W, 1.88 kcal/min for HR, 2.50 kcal/min for GSR,
2.78kcal/min for respiration rate and 2.52kcal/min for skin
humidity (see Fig. 4). Combining signals for the ECG Neck-
lace (A-C and HR) reduced the RMSE to 1.59 kcal/min,
while combining signals for the Wristband (A-W, GSR and
skin humidity) reduced the RMSE to 1.95 kcal/min.

6.2 Activity Clusters Classification
Subject independent classification accuracy of activity type

for the ECG Necklace using ACC features only was 93%.
Recognition accuracy on each cluster is shown in Fig. 5.
Performance was improved by 2% when HR was included
(p = 0.07 > α). Accuracy for the Wristband was 72% (see
Fig. 5). Accuracy increased by 8% when GSR and skin
humidity were included in the model (p = 0.0019 < α). In-
clusion of the respiration signal in the ECG Necklace model
did not improve accuracy. Fig. 7 shows the misclassifica-
tion rate for each cluster. Activity misclassification for the
Wristband was higher for each activity cluster.

6.3 Activity-Specific EE Models
The relation between ACC, physiological signals and EE

within an activity cluster was analyzed for active clusters
only (i.e. dynamic, walking, biking and running). Correla-
tion coefficient between HR and EE for each cluster of activi-
ties outperformed all other signals (0.57 for dynamic, 0.92 for
walking, 0.96 for biking and 0.92 for running). Correlation
coefficient between GSR, skin humidity and EE was below
0.21 for dynamic and ranged between 0.32 and 0.67 for walk-
ing, biking and running. Correlation ranged between 0.40
and 0.77 for A-C, while was always weak for A-W (< 0.51).
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Figure 4: RMSE for all the signals included in this
study, subject independent evaluation of single mod-
els. ECG Necklace (N) combines A-C and HR,
Wristband (W) combines A-W, GSR and humidity.

6.3.1 Assuming Perfect Activity Recognition
Subject independent RMSE for activity-specific multiple

linear regression models, assuming perfect activity recogni-
tion, are shown in Fig. 6. Activity-specific models including
HR for the ECG Necklace outperform ACC only models for
walking and biking clusters. The Wristband’s RMSE was
not significantly reduced by combining ACC and physiolog-
ical signals in any activity cluster.

6.3.2 Including Cluster Misclassification
Misclassification for the Wristband often concerns confu-

sion between inactive (e.g. sedentary) and active (e.g. bik-
ing) clusters, leading to higher EE estimation errors due to
the application of the wrong activity-specific model. How-
ever, confusion between inactive and active clusters is highly
reduced when physiological signals were used for activity
recognition (lying and sedentary misclassification as biking
goes from 20% to 1%). Fig. 8 shows the reduction in RMSE
for all clusters, when physiological signals were included.
Overall, misclassification causes RMSE to increase from 0.94
(average of the six clusters) to 0.99 kcal/min for the ECG
Necklace, and from 1.05 to 1.25kcal/min for the Wristband.

L* L^ S* S^ D* D^ W* W^ B* B^ R* R^

ECG Necklace

Activity Clusters

ac
cu

ra
cy

 (%
)

40
60

80
10
0

L* L^ S* S^ D* D^ W* W^ B* B^ R* R^

Wristband

ac
cu

ra
cy

 (%
)

40
60

80
10
0 L = Lying

S = Sedentary
D = Dynamic/HWBM
W = Walking
B = Biking
R = Running

Figure 5: Accuracy for the activity recognition mod-
els implemented in this study. Results are shown
per cluster of activities. * indicate ACC models, Λ
indicate combined models (ACC+physiological).
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Figure 6: RMSE of activity-specific EE models for
the ECG Necklace and Wristband sensors, assuming
perfect activity recognition. * indicate ACC models,
Λ indicate combined models.

However, RMSE after misclassification is 35 and 36% lower
for the ECG Necklace (p = 0.0008 < α) and Wristband
(p = 0.00001 < α) activity-specific models compared to sin-
gle models. RMSE is reduced by 18 - ECG Necklace - and
46% - Wristband - when including physiological signals.

7. DISCUSSION AND CONCLUSION
In this study, we evaluated the impact of ACC and mul-

tiple physiological signals acquired from two body locations
on activity type recognition and EE estimation. To the
best of our knowledge, this is the first time that state of
the art activity recognition and activity-specific EE models
are jointly evaluated to determine benefits of using different
physiological signals. Especially when developing activity-
specific models, evaluating the benefit of multiple signals
at each stage of the estimation process (activity recognition
and activity-specific EE models) is important, since different
signals relate differently to levels of physical exertion, and
can contribute distinctively. We report three main findings.
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Figure 7: Misclassification of the activity recogni-
tion models per cluster of activities.* indicate ACC
models Λ indicate combined models.
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Figure 8: RMSE of activity-specific EE models for
the ECG Necklace and Wristband sensors, including
misclassification effects.* indicate ACC models, Λ
indicate combined models.

a) On physiological signals: HR is the best predictor of
EE, given the direct relation to oxygen uptake, while other
physiological signals have a coarser relation to level of physi-
cal exertion, which makes them better predictors of activity
and inactivity conditions, or activity type clusters (when
combined with ACC). Given the coarse relation between
physiological signals other than HR and EE, these signals
(GSR level, respiration rate, skin humidity), do not provide
extra information on differences in EE for one activity clus-
ter, compared to ACC only. Correlation coefficient between
EE and GSR, skin humidity, respiration was relatively high
when computed over the complete set of activities (range 0.7
to 0.76). However, when the analysis is broken down to the
activity cluster level, these signals are weakly correlated to
EE (range 0.21 to 0.67), compared to HR.
b) On activity recognition: As expected, the ECG Neck-

lace showed better performance compared to the Wristband
(15 − 21% difference), due to the positioning close to the
body’s center of mass, where motion is more representative
of PA levels. Activity misclassification of the Wristband is
due to the fact that not only movement at the wrist is weakly
related to EE, but also to activity type (high intensity of
wrist movement can be detected even at rest, while e.g.
writing). By combining ACC with GSR and skin humid-
ity, the misclassification error between inactive and active
clusters could be significantly reduced. Previous research
underestimated the importance of physiological signals in
activity type recognition, since multiple accelerometer were
used [20]. However, when dealing with single sensor devices
(a condition necessary to improve user comfort), physiolog-
ical data brings significant improvements (e.g. lying and
sedentary misclassification as biking went from 20% to 1%).
c) On combining signals: Combining ACC and physio-

logical signals improved performance of both activity type
recognition and EE estimation, since the two sensor modal-
ities are often complementary, regardless of the models used
(single regression or activity-specific). Especially when the
sensor is located where motion is weakly related to activity
type and EE (e.g. the wrist), combining ACC and phys-
iological signals showed the most significant improvements
(8% in activity recognition, 46% in EE estimation).



We recognize limitations in this study. Even though per-
formance of PA monitoring systems should be assessed in
free living conditions, there is currently no reference system
able to measure breath-by-breath EE in unconstrained set-
tings. Only by using indirect calorimetry and supervised
settings we can record data which allows us to analyze how
multiple signals affect the EE estimate process in both ac-
tivity recognition and EE within one activity cluster.

The aim of our analysis was to understand what physio-
logical signals can be used for physical activity assessment,
in terms of both activity type recognition and EE estima-
tion. Some signals showed high correlation with EE but
failed to reduce RMSE compared to ACC alone when an-
alyzed in a subject independent manner. This behavior is
expected, since physiological signals are highly dependent
on the subject, and typically require individual calibration
to predict EE accurately. The causes behind these individ-
ual differences can be of different nature depending on the
signal taken into account (for example cardiorespiratory fit-
ness is considered the main factor behind variability in HR
during physical effort). Therefore, to fully exploit the dis-
criminative power of physiological signals for both activity
type recognition and EE estimation, new procedures able
to automatically normalize differences in physiological sig-
nals between individuals are necessary. We are focusing our
future work on such personalization techniques, aiming at
introducing methodologies able to normalize various physio-
logical signals independently of the causes which are gener-
ating differences between individuals. Towards this aim, we
already introduced a technique able to personalize HR based
EE estimations [4]. Additionally, non-steady-state and tran-
sitions between activities, where changes in physiological sig-
nals lag behind changes in activity type and EE, should be
investigated and modeled.
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